PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancement of Thermal Stability, Conductivity and Smoke Suppression of Polyethylene Composites with Exfoliated MoS2 Functionalized with Magnetite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work reports a facile fabrication method to modify exfoliated molybdenum disulfide (e-MoS2) nanosheets with magnetite nanoparticles with various size distribution. The obtained materials have been utilized as nanofillers of polyethylene to enhance its thermal properties and flame retardance. The incorporation of magnetite modified MoS2 nanosheets leads to the reduction of the peak heat release rate. The best thermal conductivity has been noticed for composites with e-MoS2/Fe3O4 with 2 wt. % of nanofillers. The lowest CO emission was observed for the PE/e-MoS2 composite containing also 2 wt. % of Fe3O4. All composites with exfoliated MoS2 exhibited greater thermal properties in respect to the pristine polyethylene.
Rocznik
Strony
27--34
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wz.
Twórcy
  • West Pomeranian University of Technology, Faculty of Chemical Technology and Engineering, Department of Nanomaterials Physicochemistry Szczecin, Poland
  • West Pomeranian University of Technology, Faculty of Chemical Technology and Engineering, Department of Nanomaterials Physicochemistry Szczecin, Poland
  • West Pomeranian University of Technology, Faculty of Chemical Technology and Engineering, Department of Nanomaterials Physicochemistry Szczecin, Poland
autor
  • West Pomeranian University of Technology, Faculty of Chemical Technology and Engineering, Department of Nanomaterials Physicochemistry Szczecin, Poland
Bibliografia
  • 1. Liu, SP. (2014). Flame retardant and mechanical properties of polyethylene/magnesium hydroxide/montmorillonite nanocomposites. J. Ind. Eng. Chem., 20, 2401–2408. DOI: 10.1016/j.jiec.2013.10.020.
  • 2. Ronca, S. (2017). Polyethylene. In: M. Gilbert (Ed.). Brydson’s Plastics Materials (Eighth Edition), Elsevier, pp 247–278. ISBN: 9780323358248.10.1016/B978-0-323-35824-8.00010-4.
  • 3. Xie, F., Wang, YZ., Yang, B. & Liu, Y.A (2006). Novel Intumescent Flame-Retardant Polyethylene System. Macromol. Mater. Eng., 291, 247–253. DOI: 10.1002/mame.200500356.
  • 4. Patel, R.J. & Wang, Q. (2016). Prediction of properties and modeling fire behavior of polyethylene using cone calorimeter. J. Loss. Prev. Process. 41, 411–18. DOI: 10.1016/j. jlp.2015.11.009.
  • 5. Shaw, S., Blum, A., Weber, R., Kannan, K., Rich, D., Lucas, D., Koshland, C.P., Dobraca, D., Hanson, S., Birnbaum, L.S. & Birnbaum, L. (2010). Halogenated flame retardants: do the fire safety benefits justify the risks? Rev. Environ. Health. 25, 261–305. DOI: 10.1515/reveh.2010.25.4.261.21268442.
  • 6. Shaw, S.D. & Kannan, K. (2009). Polybrominated diphenyl ethers in marine ecosystems of the American continents: foresight from current knowledge. Rev. Environ. Health. 24, 157–229. DOI: 10.1515/reveh.2009.24.3.157.19891120.
  • 7. Costa, L.G. & Giordano, G. (2007). Developmental neurotoxicity of polybrominated diphenyl ether (PBDE) flame retardants. Neurotoxicology, 28, 1047–1067. DOI: 10.1016/j. neuro.2007.08.007.
  • 8. Choi, W., Choudhary, N., Han, G.H., Park, J., Akinwande, D. & Lee, Y.H. (2017). Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today, 20, 116–130. DOI: 10.1016/j.mattod.2016.10.002.
  • 9. Zhang, X.F., Luster, B., Church, A., Muratore, C., Voevodin, A.A., Kohli, P., Aouadi, S. & Talapatra, S. (2009). Carbon Nanotube−MoS2 Composites as Solid Lubricants. ACS Appl. Mater. Interfaces. 1, 735–739. DOI: 10.1021/am800240e.20355996
  • 10. Yang, L., Wang, S., Mao, J., Deng, J., Gao, Q., Tang, Y. & Schmidt, O.G. (2013). Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries. Adv. Mater., 25, 1180–1184. DOI: 10.1002/adma.201203999.23233278.
  • 11. Deng, Z.N., Jiang, H., Hu, Y.J., Liu, Y., Zhang, L., Liu, H.L. & Li, C.Z. (2013). 3D Ordered Macroporous MoS2@C Nanostructure for Flexible Li-Ion Batteries. Adv. Mater. 29, 1603020–1603027. DOI: 10.1002/adma.201603020.28067960.
  • 12. Zhou, W., Yin, Z., Du, Y., Huang, X., Zeng, Z., Fan, Z., Liu, H., Wang, J. & Zhang, H. (2013). Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small, 9, 140–147. DOI: 10.1002/smll.201201161.23034984.
  • 13. Wang, D., Zhou, K.Q., Yang, W., Xing, W.Y., Hu, Y. & Gong, X.L. (2013). Surface modification of graphene with layered molybdenum disulfide and their synergistic reinforcement on reducing fire hazards of epoxy resins. Ind. Eng. Chem. Res., 52, 17882–17890, DOI: 10.1021/ie402441g.
  • 14. Bourbigot, S., Le Bras, M., Duquesne, S. & Rochery, M. (2014). Recent advances for intumescent polymers. Macromol. Mater. Eng., 289, 499–511. DOI: 10.1002/mame.200400007.
  • 15. Wang, D., Song, L., Zhou, K., Yu, X., Hu, Y. & Wang, J. (2015). Anomalous nano-barrier effects of ultrathin molybdenum disulfide nanosheets for improving the flame retardance of polymer nanocomposites. J. Mater. Chem. A. 3, 14307–14317. DOI: 10.1039/C5TA01720C.
  • 16. Zhou, K.Q., Jiang, S.H., Bao, C.L., Song, L., Wang, B.B., Tang, G., Hu, Y. & Gui, Z. (2012). Preparation of poly(vinyl alcohol) nanocomposites with molybdenum disulfide (MoS2): structural characteristics and markedly enhanced properties. RSC Adv., 2, 11695–11703. DOI: 10.1039/C2RA21719H.
  • 17. Zhou, K., Yang, W., Tang, G., Wang, B., Jiang, S., Hu, Y. & Gui, Z. (2013). Comparative study on the thermal stability, flame retardancy and smoke suppression properties of polystyrene composites containing molybdenum disulfide and graphene. RSC Adv., 3, 25030–25040. DOI: 10.1039/C3RA43297A.
  • 18. Cai, W., Zhan, J., Feng, X., Yuan, B., Liu, J., Hu, W. & Hu, Y., (2017). Facile Construction of Flame Retardant-Wrapped Molybdenum Disulfide Nanosheets for Properties Enhancement of Thermoplastic Polyurethane. Ind. Eng. Chem. Res., 56, 7229−7238. DOI: 10.1021/acs.iecr.7b01202.
  • 19. Zhou, K., Liu, J., Wen, P., Hu, J. & Gui, Z. (2014). A noncovalent functionalization approach to improve the dispersibility and properties of polymer/MoS2 composites. Appl. Surf. Sci., 316, 237–244. DOI: 10.1016/j.apsusc.2014.07.136.
  • 20. Jeffery, A.A., Nethravathi, C. & Rajamathi, M. (2015). Scalable large nanosheets of transition metal disulphides through exfoliation of amine intercalated MS2 [M ¼ Mo, W] in organic solvents. RSC Adv., 5, 51176–51182. DOI: 10.1039/C5RA08402D.
  • 21. Zhang, H., Moon, Y.K.; Zhang, X.Q., Zhang, H.X. & Yoon, K.B. (2016). In situ polymerization approach to functionalized MoS2/polyethylene nanocomposites with enhanced thermal stability and mechanical properties. RSC Adv., 6, 112429–112434. DOI: 10.1039/C6RA23723A.
  • 22. Zhou, K., Gao, R. & Qian, X. (2017). Self-assembly of exfoliated molybdenum disulfide (MoS2) nanosheets and layered double hydroxide (LDH): Towards reducing fire hazards of epoxy. J. Hazard. Mater., 338, 343–355. DOI: 10.1016/j.jhazmat.2017.05.046.28595156.
  • 23. Ghanbari, D., Salavati-Niasari, M. & Ghasemi-Kooch, M. (2014). A sonochemical method for synthesis of Fe3O4 nanoparticles and thermal stable PVA-based magnetic nano-composite. J. Ind. Eng. Chem., 20, 3970–3974. DOI: 10.1016/j. jiec.2013.12.098.
  • 24. Ghanbari, D. & Salavati-Niasari, M. (2015) Synthesis of urchin-like CdS-Fe3O4 nanocomposite and its application in flame retardancy of magnetic cellulose acetate. J. Ind. Eng. Chem., 24, 284–292. DOI: 10.1016/j.jiec.2014.09.043.
  • 25. Liu, Y., Kong, Q.H., Zhao, X.B.; Zhu, P., Zhao, J., Cubillo, A.E., Santarén, J. & Wang, D.Y. (2017). Effect of Fe3O4-doped sepiolite on the flammability and thermal degradation properties of epoxy composites. Polym. Adv. Technol., 28, 971–978. DOI: 10.1002/pat.3715.
  • 26. Chang, K. & Chen, W. (2011) l-Cysteine-Assisted Synthesis of Layered MoS2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries. ACS Nano, 5, 4720–4728. DOI: 10.1021/nn200659w.21574610.
  • 27. Matusinovic, Z., Shukla, R., Manias, E., Hogshead, C.G. &Wilkie, C.A. (2012) Polystyrene/molybdenum disulfide and poly(methyl methacrylate)/molybdenum disulfide nanocompo-sites with enhanced thermal stability. Polym. Degrad. Stabil., 97, 2481–2486. DOI: 10.1016/j.polymdegradstab.2012.07.004.
  • 28. Zhou, K., Zhang, Q., Liu, J., Wang, B., Jiang, S., Shi, Y., Hu, Y. & Gui, Z. (2014). Synergetic effect of ferrocene and MoS2 in polystyrene composites with enhanced thermal stability, flame retardant and smoke suppression properties. RSC Adv., 4, 13205–13214. DOI: 10.1039/C3RA46334F.
  • 29. Zhou, K., Jiang, S., Shi, Y., Liu, J., Wang, B., Hu, Y. & Gui, Z. (2014) Multigram-scale fabrication of organic modified MoS2 nanosheets dispersed in polystyrene with improved thermal stability, fire resistance, and smoke suppression properties. RSC Adv., 4, 40170–40180. DOI: 10.1039/C4RA02347A.
  • 30. Yao, K., Gong, J., Tian, N., Lin, Y., Wen, X., Jiang, Z., Na, H. & Tang, T. (2015). Flammability properties and electromagnetic interference shielding of PVC/graphene composites containing Fe3O4 nanoparticles. RSC Adv., 5, 31910–31919. DOI: 10.1039/C5RA01046B.
  • 31. Beltrán-Ramírez, F.I., Ramos-deValle, L.F., Ramírez-Vargas, E., Sánchez-Valdes, S., Espinoza-Martínez, A.B., Martínez-Colunga, J.G., Rodríguez-Fernandez, O.S., Cabrera-Alvarez, E.N. & López-Quintanilla, M.L. (2014). Effect of Nanometric Metallic Hydroxides on the Flame Retardant Properties of HDPE Composites. J. Nanomater., 969184. DOI: 10.1155/2014/969184.
  • 32. Manzi-Nshuti, C., Chen, D., Su, S.P. & Wilkie, C.A. (2009). Structure-property relationships of new polystyrene nanocomposites prepared from initiator-containing layered double hydroxides of zinc aluminum and magnesium aluminum. Polym. Degrad. Stabil., 94, 1290–1297. DOI: 10.1016/j.polymdegradstab.2009.03.021.
  • 33. Wang, J.Q. & Han, D. (2006). The combustion behavior of polyacrylate ester/graphite oxide composite. Polym. Adv. Technol., 17, 335–340. DOI: 10.1002/pat.698.
  • 34. Zhang, Q., Tian, M., Wu, Y., Lin, G. & Zhang, L. (2014.) Effect of particle size on the properties of Mg(OH)2- filled rubber composites. J. Appl. Polym. Sci., 94, 2341–2346. DOI: 10.1002/app.21037.
  • 35. Laachachi, A., Leroy, E., Cochez, M., Ferriol, M. & Cuesta, J.M.L. (2005) Use of oxide nanoparticles and organoclays to improve thermal stability and fire retardancy of poly(methyl methacrylate). Polym. Degrad. Stabil., 89, 344–352. DOI: 10.1016/j.polymdegradstab.2005.01.019.
  • 36. Zhou, W., Wang, C., Ai, T., Wu, K., Zhao, F. & Gu, H. (2009). A novel fiber-reinforced polyethylene composite with added silicon nitride particles for enhanced thermal conductivity. Composites: Part A, 40, 830–836, DOI: 10.1016/j.compositesa.2009.04.005.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1720de03-292f-4d4e-9cfa-5f8785933225
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.