PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Global Geodetic Observing System in Poland 2019–2022

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper summarizes the contribution of Polish scientific units to the development of the Global Geodetic Observing System (GGOS) in recent years. We discuss the issues related to the integration of space geodetic techniques and co-location in space onboard Global Navigation Satellites Systems (GNSS) and Low Earth Orbiters (LEO), as well as perspectives introduced by the new European Space Agency’s (ESA) mission GENESIS. We summarize recent developments in terms of the European Galileo system and its contribution to satellite geodesy and general relativity, as well as ESA’s recent initiative – Moonlight to establish a satellite navigation and communication system for the Moon. Recent progress in troposphere delay modeling in Satellite Laser Ranging (SLR) allowed for better handling of systematic errors in SLR, such as range biases and tropospheric biases. We discuss enhanced tropospheric delay models for SLR based on numerical weather models with empirical corrections, which improve the consistency between space geodetic parameters derived using different techniques, such as SLR, GNSS, and Very Long Baseline Interferometry (VLBI). Finally, we review recent progress in the development of Polish GGOS scientific infrastructure in the framework of the European Plate Observing System project EPOS-PL.
Rocznik
Strony
art. no. e38, 2023
Opis fizyczny
Bibliogr. 67 poz., rys., wykr.
Twórcy
  • Wroclaw University of Environmental and Life Science, Wroclaw, Poland
  • Wroclaw University of Environmental and Life Science, Wroclaw, Poland
  • Wroclaw University of Environmental and Life Science, Wroclaw, Poland
Bibliografia
  • 1. Altamimi, Z., Rebischung, P., Collilieux, X. et al. (2022). ITRF2020: main results and key performance indicators. In EGU General Assembly Conference, 4-8 May 2020, Vienna, Austria. DOI: 10.5194/egusphere-egu22-3958.
  • 2. Arnold, D., Meindl, M., Beutler, G. et al. (2015). CODE’s new solar radiation pressure model for GNSS orbit determination. J. Geod., 89(8), 775–791. DOI: 10.1007/s00190-015-0814-4.
  • 3. Arnold, D., Montenbruck, O., Hackel, S. et al. (2019). Satellite laser ranging to low Earth orbiters: orbit and network validation. J. Geod., 93(11), 2315–2334. DOI: 10.1007/s00190-018-1140-4.
  • 4. Baselga, S., and Najder, J. (2022). Automated detection of discontinuities in EUREF permanent GNSS network stations due to earthquake events. Surv. Rev., 54(386), 420–428. DOI: 10.1080/00396265.2021.1964230.
  • 5. Bury, G., Zajdel, R., and Sosnica, K. (2019a). Accounting for perturbing forces acting on Galileo using a box-wing model. GPS Solut., 23 (74), 1–12. DOI: 10.1007/s10291-019-0860-0.
  • 6. Bury, G., Sosnica, K., and Zajdel, R. (2019b). Multi-GNSS orbit determination using satellite laser ranging. J. Geod., 93 (12), 2447–2463. DOI: 10.1007/s00190-018-1143-1.
  • 7. Bury, G., Sosnica, K., and Zajdel, R. (2019c). Impact of the Atmospheric Non-tidal Pressure Loading on Global Geodetic Parameters Based on Satellite Laser Ranging to GNSS. IEEE Trans. Geosci. Remote Sens., 57(6), 3574–3590. DOI: 10.1109/TGRS.2018.2885845.
  • 8. Bury, G., Sosnica, K., Zajdel, R. et al. (2020). Toward the 1-cm Galileo orbits: challenges in modeling of perturbing forces. J. Geod., 94 (16), 1–19. DOI: 10.1007/s00190-020-01342-2.
  • 9. Bury, G., Sosnica, K., Zajdel, R. et al. (2021a). Geodetic datum realization using SLR-GNSS co-location onboard Galileo and GLONASS. J. Geophys. Res. Solid Earth, 126(10), 1–23. DOI: 10.1029/2021JB022211.
  • 10. Bury, G., Sosnica, K., Zajdel, R. et al. (2021b). Determination of precise Galileo orbits using combined GNSS and SLR observations. GPS Solut., 25(11), 1–13. DOI: 10.1007/s10291-020-01045-3.
  • 11. Bury, G., Sosnica, K., Zajdel, R. et al.. (2022). GLONASS precise orbit determination with identification of malfunctioning spacecraft. GPS Solut., 26(36), 1–13. DOI: 10.1007/s10291-021-01221-z.
  • 12. Czikhardt, R., van der Marel, H., Papco, J. et al. (2021). On the Efficacy of Compact Radar Transponders for InSAR Geodesy: Results of Multiyear Field Tests. IEEE Trans. Geosci. Remote Sens., 60, 1–13. DOI: 10.1109/TGRS.2021.3119917.
  • 13. Delva, P., Altamimi, Z., Blazquez, A. et al. (2023). GENESIS: Co-location of geodetic techniques in space. Earth Planets Space, 1752. DOI: 10.1186/s40623-022-01752-w.
  • 14. Di Benedetto, M., Boscagli, G., De Marchi, F. et al. (2022). An architecture for a lunar navigation system: orbit determination and time synchronization. In: Proceedings of the ESA’s 8th International Colloquium on Scientific and Fundamental Aspects of GNSS, 14-16 September 2022, Sofia, Bulgaria.
  • 15. Drozdzewski, M., Sosnica, K., Zus, F. et al. (2019). Troposphere delay modeling with horizontal gradients for satellite laser ranging. J. Geod., 93(10), 1853–1866. DOI: 10.1007/s00190-019-01287-1.
  • 16. Drozdzewski, M., and Sosnica, K. (2021). Tropospheric and range biases in Satellite Laser Ranging. J. Geod., 95(100), 1–18. DOI: 10.1007/s00190-021-01554-0.
  • 17. Gruber, T., Ågren, J., Angermann, D. et al. (2020). Geodetic SAR for Height System Unification and Sea Level Research-Observation Concept and Preliminary Results in the Baltic Sea. Remote Sens., 12, 3747. DOI: 10.3390/rs12223747.
  • 18. Gruber, T., Ågren, J., Angermann, D. et al. (2022). Geodetic SAR for Height System Unification and Sea Level Research-Results in the Baltic Sea Test Network. Remote Sens., 14, 3250. DOI: 10.3390/rs14143250.
  • 19. Hadas, T., Kazmierski, K., and Sosnica, K. (2019). Performance of Galileo-only dual-frequency absolute positioning using the fully serviceable Galileo constellation. GPS Solut., 23(108), 1-12. DOI: 10.1007/s10291-019-0900-9.
  • 20. Hadas, T., and Hobiger, T. (2021). Benefits of Using Galileo for Real-Time GNSS Meteorology. IEEE Geosci. Remote Sens. Lett., 18(10), 1756–1760. DOI: 10.1109/LGRS.2020.3007138.
  • 21. Hellerschmied, A., McCallum, L., McCallum, J. et al. (2018). Observing APOD with the AuScope VLBI array. Sensors, 18(5), 1587. DOI: 10.3390/s18051587.
  • 22. Iess, L., Sosnica, K., Racioppa, P. et al. (2022). ’ATLAS-Fundamental techniques, models and algorithms for a lunar radio navigation system’: a proposal for a lunar navigation system infrastructure. In 44th COSPAR Scientific Assembly, 16–24 July 2022, Athens, Greece.
  • 23. Jagoda, M., Rutkowska, M., Lejba, P. et al. (2020). Satellite Laser Ranging for Retrieval of the Local Values of the Love h2 and Shida l2 Numbers for the Australian ILRS Stations. Sensors, 20, 6851. DOI: 10.3390/s20236851.
  • 24. Kallio, U., Rouhiainen, P., Raja-Halli, A. et al. (2022). Validation of GNSS-based reference point monitoring of the VGOS VLBI telescope at Metsähovi. In 5th Joint International Symposium on Deformation Monitoring (JISDM), 20–22 June 2022, Valencia, Spain. DOI: 10.4995/JISDM2022.2022.16057.
  • 25. Katsigianni, G., Loyer, S., Perosanz, F. et al. (2019). Improving Galileo orbit determination using zero-difference ambiguity fixing in a Multi-GNSS processing. Adv. Space Res., 63 (9), 2952–2963. DOI: 10.1016/j.asr.2018.08.035.
  • 26. Kazmierski, K., Zajdel, R., and Sosnica, K. (2020). Evolution of orbit and clock quality for real-time multi-GNSS solutions. GPS Solut., 24 (111), 1–12. DOI: 10.1007/s10291-020-01026-6.
  • 27. Kosek, W., Popinski, W., Wnek, A. et al. (2020). Analysis of Systematic Errors in Geocenter Coordinates Determined From GNSS, SLR, DORIS, and GRACE. Pure Appl. Geophys., 177, 867–888. DOI: 10.1007/s00024-019-02355-5.
  • 28. Kucharski, D., Kirchner, G., Otsubo, T. et al. (2019). Hypertemporal photometric measurement of space-borne mirrors specular reflectivity for Laser Time Transfer link model. Adv. Space Res., 64(4), 957–963. DOI: 10.1016/j.asr.2019.05.030.
  • 29. Kur, T., and Kalarus, M. (2021). Simulation of Inter-Satellite Link schemes for use in precise orbit determination and clock estimation. Adv. Space Res., 68(12), 4734–4752. DOI: 10.1016/j.asr.2021.05.011.
  • 30. Kur, T., Liwosz, T., and Kalarus, M. (2021). The application of inter-satellite links connectivity schemes in various satellite navigation systems for orbit and clock corrections determination: simulation study. Acta Geodaet. Geophys., 56(1), 1–28. DOI: 10.1007/s40328-020-00322-4.
  • 31. Kur, T., and Liwosz, T. (2022). Simulation of the Use of Variance Component Estimation in Relative Weighting of Inter-Satellite Links and GNSS Measurements. Remote Sens., 14(24), 6387. DOI: 10.3390/rs14246387.
  • 32. Meyer, U., Sosnica, K., Arnold, D. et al. (2019). SLR, GRACE and Swarm Gravity Field Determination and Combination. Remote Sens., 11 (8), 956. DOI: 10.3390/rs11080956.
  • 33. Mikos, M., Kazmierski, K., and Sosnica K. (2023). Characteristics of the IGS receiver clock performance from multi-GNSS PPP solutions. GPS Solut., 27, 55. DOI: 10.1007/s10291-023-01394-9.
  • 34. Montenbruck, O., Kunzi, F., and Hauschild, A. (2022). Performance assessment of GNSS-based real-time navigation for the Sentinel-6 spacecraft. GPS Solut.., 26(1), 1–11. DOI: 10.1007/s10291-021-01198-9.
  • 35. Najder, J. (2020). Automatic detection of discontinuities in the station position time series of the reprocessed global GNSS network using Bernese GNSS Software. Acta Geodyn. Geomater., 17(4), 439–451. DOI: 10.13168/AGG.2020.0032.
  • 36. Najder, J., and Sosnica, K. (2021). Quality of Orbit Predictions for Satellites Tracked by SLR Stations. Remote Sens., 13(7), 1377. DOI: 10.3390/rs13071377.
  • 37. Otsubo, T., Müller, H., Pavlis, E.C. et al. (2019). Rapid response quality control service for the laser ranging tracking network. J. Geod., 93(11), 2335–2344. DOI: 10.1007/s00190-018-1197-0.
  • 38. Plag, H., and Pearlman, M. (2009). Global Geodetic Observing System. Springer-Verlag: Berlin Heidelberg. DOI: 10.1007/978-3-642-02687-4.
  • 39. Schillak, S., Lejba, P., and Michalek, P. (2021). Analysis of the Quality of SLR Station Coordinates Determined from Laser Ranging to the LARES Satellite. Sensors, 21(3), 737. DOI: 10.3390/s21030737.
  • 40. Schillak, S., Lejba, P., Michalek, P. et al. (2022). Analysis of the Results of the Borowiec SLR Station (7811) for the Period 1993–2019 as an Example of the Quality Assessment of Satellite Laser Ranging Stations. Sensors, 22(2), 616. DOI: 10.3390/s22020616.
  • 41. Seitz, M., Bloßfeld, M., Glomsda, M. et al. (2022). DTRF2020: the ITRS 2020 realization of DGFI-TUM. In IAG International Symposium on Reference Frames for Applications in Geosciences, 17–19 October, 2022, Thessaloniki, Greece.
  • 42. Sesta, A., Di Benedetto, M., Durante, D. et al. (2023). Orbit Determination and Time Transfer for a Lunar Radio Navigation System. EGU General Assembly Conference, 23–28 April 2023, Vienna, Austria. DOI: 10.5194/egusphere-egu23-15933.
  • 43. Smaglo, A., Lejba, P., Schillak, S. et al. (2021). Measurements to space debris in 2016-2020 by laser sensor at Borowiec Poland. Artif. Satell. J. Planet. Geod., 56. DOI: 10.2478/arsa-2001-0009.
  • 44. Sosnica, K., and Bosy, J. (2019). Global Geodetic Observing System 2015–2018. Geod. Cartogr., 68(1). DOI: 10.24425/gac.2019.126090.
  • 45. Sosnica, K., Bury, G., Zajdel, R. et al. (2019). Estimating global geodetic parameters using SLR observations to Galileo, GLONASS, BeiDou, GPS, and QZSS. Earth Planets Space, 71(20), 1–11. DOI: 10.1186/s40623-019-1000-3.
  • 46. Sosnica, K., Zajdel, R., Bury, G. et al. (2020). Quality assessment of experimental IGS multi-GNSS combined orbits. GPS Solut., 24 (54), 1–14. DOI: 10.1007/s10291-020-0965-5.
  • 47. Sosnica, K., Bury, G., Zajdel, R. et al. (2021). General relativistic effects acting on the orbits of Galileo satellites. Celest. Mech. Dyn. Astron., 133(14), 1–31. DOI: 10.1007/s10569-021-10014-y.
  • 48. Sosnica K., Bury G., Zajdel R. et al. (2022). GPS, GLONASS, and Galileo orbit geometry variations caused by general relativity focusing on Galileo in eccentric orbits. GPS Solut., 26(5), 1–12. DOI: 10.1007/s10291-021-01192-1.
  • 49. Sosnica, K., Zajdel, R., Bury, G. et al. (2023). Precise orbits for the lunar navigation system: challenges in the modeling of perturbing forces and broadcast orbit representation. In EGU General Assembly Conference, 23-28 April 2023, Vienna, Austria. DOI: 10.5194/egusphere-egu23-5575.
  • 50. Suchodolski, T. (2022). Active Control Loop of the BOROWIEC SLR Space Debris Tracking System. Sensors, 22(6), 2231. DOI: 10.3390/s22062231.
  • 51. Strugarek, D., Sosnica, K., Arnold, D. et al. (2019a). Determination of Global Geodetic Parameters Using Satellite Laser Ranging Measurements to Sentinel-3 Satellites. Remote Sens., 11 (19), 2282. DOI: 10.3390/rs11192282.
  • 52. Strugarek, D., Sosnica, K., and Jäggi, A. (2019b). Characteristics of GOCE orbits based on Satellite Laser Ranging. Adv. Space Res., 63(1), 417-431. DOI: 10.1016/j.asr.2018.08.033.
  • 53. Strugarek, D., Sosnica, K., Arnold, D. et al. (2021a). Determination of SLR station coordinates based on LEO, LARES, LAGEOS, and Galileo satellites. Earth Planets Space, 73(87), 1-21. DOI: 10.1186/s40623-021-01397-1.
  • 54. Strugarek, D., Sosnica, K., Zajdel, R. et al. (2021b). Detector-specific issues in Satellite Laser Ranging to Swarm-A/B/C satellites. Measurement, 182(109786), 1–12. DOI: 10.1016/j.measurement. 2021.109786.
  • 55. Strugarek, D., Sosnica, K., Arnold, D. et al. (2022). Satellite laser ranging to GNSS-based Swarm orbits with handling of systematic errors. GPS Solut., 26 (104), 1–14. DOI: 10.1007/s10291-022-01289-1.
  • 56. Wilgan, K., Dick, G., Zus, F. et al. (2022). Towards operational multi-GNSS tropospheric products at GFZ Potsdam. Atmos. Meas. Tech., 15(1), 21–39. DOI: 10.5194/amt-15-21-2022.
  • 57. Wilgan, K., Dick, G., Zus, F. et al. (2023). Tropospheric parameters from multi-GNSS and numerical weather models: case study of severe precipitation and flooding in Germany in July 2021. GPS Solut., 27, 49. DOI: 10.1007/s10291-022-01379-0.
  • 58. Yu, H., Sosnica, K., and Shen, Y. (2021a). Separation of Geophysical Signals in the LAGEOS Geocenter Motion based on Singular Spectrum Analysis. Geophys. J. Int., ggab063, 1–25. DOI: 10.1093/gji/ggab063.
  • 59. Yu, H., Chen, Q., Sun, Y. et al. (2021b). Geophysical Signal Detection in the Earth’s Oblateness Variation and Its Climate-Driven Source Analysis. Remote Sens., 13(10), 1–18. DOI: 10.3390/rs13102004.
  • 60. Zajdel, R., Sosnica, K., Dach, R. et al. (2019a). Network effects and handling of the geocenter motion in multi-GNSS processing. J. Geophys. Res. Solid Earth, 124(6), 5970–5989. DOI: 10.1029/2019JB017443.
  • 61. Zajdel, R., Sosnica, K., Drozdzewski, M. et al. (2019b). Impact of network constraining on the terrestrial reference frame realization based on SLR observations to LAGEOS. J. Geod., 93(11), 2293–2313. DOI: 10.1007/s00190-019-01307-0.
  • 62. Zajdel, R., Sosnica, K., Bury, G. et al. (2020). System-specific systematic errors in earth rotation parameters derived from GPS, GLONASS, and Galileo. GPS Solut., 24(74), 1–15. DOI: 10.1007/s10291-020-00989-w.
  • 63. Zajdel, R., Sosnica, K., and Bury, G. (2021a). Geocenter coordinates derived from multi-GNSS: a look into the role of solar radiation pressure modeling. GPS Solut., 25(1), 1–15. DOI: 10.1007/s10291-020-01037-3.
  • 64. Zajdel, R., Sosnica, K., Bury, G. et al. (2021b). Sub-daily polar motion from GPS, GLONASS, and Galileo. J. Geod., 95 (3), 1–27. DOI: 10.1007/s00190-020-01453-w.
  • 65. Zajdel R., Kazmierski K., and Sosnica K. (2022a). Orbital artifacts in multi-GNSS Precise Point Positioning time series. J. Geophys. Res. Solid Earth, 127(2), e2021JB022994. DOI: 10.1029/2021JB022994.
  • 66. Zajdel R., Steigenberger P., and Montenbruck O. (2022b). On the potential contribution of BeiDou-3 to the realization of the terrestrial reference frame scale. GPS Solut., 26(109), 1–18. DOI: 10.1007/s10291-022-01298-0.
  • 67. Zhong, L., Sosnica, K., Weigelt, M. et al. (2021). Time-Variable Gravity Field from the Combination of HLSST and SLR. Remote Sens., 13(17), 3491. DOI: 10.3390/rs13173491.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-171e91bf-6d3b-4814-af0f-572e036aaf4e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.