PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal analysis of a fully wet porous radial fin with natural convection and radiation using the spectral collocation method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Heat transfer with natural convection and radiation effect on a fully wet porous radial fin is considered. The radial velocity of the buoyancy driven flow at any radial location is obtained by applying Darcy’s law. The obtained non-dimensionalized ordinary differential equation involving three highly nonlinear terms is solved numerically with the spectral collocation method. In this approach, the dimensionless temperature is approximated by Chebyshev polynomials and discretized by Chebyshev-Gausse-Lobatto collocation points. A particular algorithm is used to reduce the nonlinearity of the conservation of energy equation. The present analysis characterizes the effect of ambient temperature in different ways and it provides a better picture regarding the effect of ambient temperature on the thermal performance of the fin. The profiles for temperature distributions and dimensionless base heat flow are obtained for different parameters which influence the heat transfer rate.
Rocznik
Strony
377--392
Opis fizyczny
Bibliogr. 22 poz., rys., wykr.
Twórcy
autor
  • Department of Mathematics, Razi University Kermanshah 67149, IRAN
  • Department of Mathematics, Razi University Kermanshah 67149, IRAN
  • Department of Mechanical Engineering Cleveland State University Cleveland, Ohio-44115, USA
  • Department of Mechanical Engineering Cleveland State University Cleveland, Ohio-44115, USA
Bibliografia
  • [1] Nguyen A. and Aziz A. (1992): The heat transfer rate from convecting-radiating fins for different profile shapes. – Heat and Mass Transfer, vol.27, pp.67-72.
  • [2] Yu L.T. and Chen C.K. (1999): Optimization of circular fins with variable thermal parameters. – J. Franklin Institute, vol.336, pp.77-95.
  • [3] Abu-Hijleh (2003): Enhanced forced convection heat transfer from a cylinder using permeable fins. – ASME J. Heat Transfer, vol.125, pp.804-811.
  • [4] Kiwan S. (2006): Thermal analysis of natural convection in porous fins. – Transport in Porous Media, vol.67, pp.17-29.
  • [5] Mobedi M. and Sunden B. (2006): Natural convection heat transfer from a thermal heat source located in a vertical plate fin. – Int. J. Heat Mass Transfer, vol.33, pp.943-950.
  • [6] Lorenzini G. and Moretti S. (2007): Numerical analysis on heat removal from Y-shaped fins: efficiency and volume occupied for a new approach to performance optimization. – Int. J. Thermal Science, vol.46, pp.573-579.
  • [7] Kundu B. and Bhanja D. (2010): Performance and optimization analysis of a constructal T-shaped fin subject to variable thermal conductivity and convective heat transfer coefficient. – Int. J. Heat Mass Transfer, vol.53, pp.254-267.
  • [8] Khani F. and Abdul Aziz (2010): Thermal analysis of a longitudinal trapezoidal fin with temperature-dependent thermal conductivity and heat transfer coefficient. – Commun Nonlinear Sci Numer Simulat, vol.15, pp.590–601.
  • [9] Turkyilmazoglu M. (2012): Exact solutions to heat transfer in straight fins of varying exponential shape having temperature dependent properties. – International Journal of Thermal Sciences, vol.55, pp.69-75.
  • [10] Gorla R.S.R. and Bakier A.Y. (2011): Thermal analysis of natural convection and radiation in porous fins. – Int. Commun. Heat Mass Transfer, vol.38, pp.638-645.
  • [11] Turkyilmazoglu M. Exact heat-transfer solutions to radial fins of general profile. – Journal of Thermophysics and Heat Transfer, DOI: 10.2514/1.T4555.
  • [12] Masoud Asadi1 and Ramin Haghighi Khoshkho (2013): Temperature distribution along a constant cross sectional area fin. – Int. Jou. of Mech. and App., vol.3, No.5, pp.131-137.
  • [13] Hatami M. and Ganj D.D. (2013): Thermal performance of circular convective–radiative porous fins with different section shapes and materials. – Energy Conversion and Management, vol.76, pp.185–193.
  • [14] Hafiz Muhammad Ali and Muhammad Abubaker (2014): Effect of vapour velocity on condensate retention on horizontal pin-fin tubes. – Energy Conversion and Management, vol.86, pp.1001–1009.
  • [15] Erdem Cuce and Pinar Mert Cuce (2015): A successful application of homotopy perturbation method for efficiency and effectiveness assessment of longitudinal porous fins. – Energy Conversion and Management, vol.93, pp.92–99.
  • [16] Turkyilmazoglu M. (2015): Stretching/shrinking longitudinal fins of rectangular profile and heat transfer. – Energy Conversion and Management, vol.91, pp.199–203.
  • [17] Darvishi M.T. (2007): Spectral collocation method and Darvishis preconditionings for Tchebychev-Gauss-Lobatto points. – International Mathematical Forum, vol.2, No.6, pp.263–272.
  • [18] Canuto C., Hussaini M.Y., Quarteroni A. and Zang T.A. (2006): Spectral Methods: Fundamentals in Single Domains. – Berlin: Springer.
  • [19] Subich C.J., Lamb K.G. and Stastna M. (2013): Simulation of the Naviere-Stokes equations in three dimensions with a spectral collocation method. – Int. J. Numer. Methods Fluids, vol.73, pp.103-129.
  • [20] Li B.W., Zhao Y.R. and Yu Y. (2011): Three-dimensional transient Naviere-Stokes solvers in cylindrical coordinate system based on a spectral collocation method using explicit treatment of the pressure. – Int. J. Numer. Methods Fluids, vol.66, pp.284-298.
  • [21] Abbasbandy S., Ghehsareh H.R. and Hashim I. (2012): An approximate solution of the MHD flow over a nonlinear sheet by rational chebyshev collocation method. – Sci. Bull. A, vol.74, pp.47-58.
  • [22] Darvishi M.T., Khani F. and Abdul Aziz (2015): Numerical investigation for a hyperbolic annular fin with temperature dependent thermal conductivity. – Propulsion and Power Research, (accepted).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-171aa303-96e6-4c9c-a4e8-bac58035efa3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.