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Heat transfer with natural convection and radiation effect on a fully wet porous radial fin is considered. The 
radial velocity of the buoyancy driven flow at any radial location is obtained by applying Darcy’s law. The 
obtained non-dimensionalized ordinary differential equation involving three highly nonlinear terms is solved 
numerically with the spectral collocation method. In this approach, the dimensionless temperature is 
approximated by Chebyshev polynomials and discretized by Chebyshev-Gausse-Lobatto collocation points. A 
particular algorithm is used to reduce the nonlinearity of the conservation of energy equation. The present 
analysis characterizes the effect of ambient temperature in different ways and it provides a better picture 
regarding the effect of ambient temperature on the thermal performance of the fin. The profiles for temperature 
distributions and dimensionless base heat flow are obtained for different parameters which influence the heat 
transfer rate. 
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1. Introduction 

 
 An extended surface from an object which is used to increase the rate of heat transfer is called a fin. 
The heat exchanging devices such as radiators in cars, computers, CPU heatsinks, heat exchangers in power 
plants, air conditioning, air-cooled aircraft engines, refrigeration devices, and cooling of oil carrying pipe 
line, etc. have fin applications. Fins are also used in newer technology such as hydrogen fuel cells.  Finned 
surfaces are made by metals including copper, aluminum, iron etc. Aluminum has high thermal conductivity, 
low weight and resistance to corrosion. The optimization of the size and cost of fins is an important target of 
fin designers. Some engineering applications require lighter fins with higher rate of heat transfer. In such 
applications, high thermal conductivity metals are used. Further, the thermal efficiency also depends on the 
shape of the fin. Therefore, the prime objective of this study is the evaluation of the heat-transfer rate as well 
as fin efficiency in the presence of a radial fin. 
 For the last two decades several authors have analyzed the heat transfer analysis of fins. Nguyen and 
Aziz [1] analyzed the heat transfer rate from convecting-radiating fins for different profile shapes. The 
optimization of circular fins with variable thermal parameters was studied by Yu and Chen [2], whereas, 
Abu-Hijleh [3] critically analyzed the enhanced forced convection heat transfer from a cylinder using 
permeable fins. Kiwan [4] made the thermal analysis of natural convection in porous fins and explained the 
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importance of porous fins in the heat transfer mechanism. The natural convection heat transfer from a 
thermal heat source located in a vertical plate fin was explained by Mobedi and Sunden [5].  
 As the efficiency of heat exchange depends on the shape of the fin, Lorenzini and Moretti [6] have 
discussed the heat removal from Y-shaped fins. Performance and optimization analyses of a constructal  
T-shaped fin when subject to variable thermal conductivity and convective heat transfer coefficient were 
made by Kundu and Bhanja [7]. Khani and Aziz [8] studied the thermal analysis of a longitudinal trapezoidal 
fin with the temperature-dependent thermal conductivity and heat transfer coefficient. Turkyilmazoglu [9] 
obtained the exact solutions to heat transfer in straight fins of varying exponential shape having temperature 
dependent properties. 
 Gorla and Bakier [10] dicussed the thermal analysis of natural convection and radiation in porous 
fins. Turkyilmazoglu [11] investigated the heat-transfer solutions to radial fins of general profile in closed 
form. Temperature distribution along a constant cross sectional area fin was obtained by Asadi and 
Khoshkho [12]. Hatami and Ganj [13] presented a theoretical study on thermal performance of circular 
convective–radiative porous fins with different section shapes and materials. Later on, Ali and Abubaker 
[14] discussed the effect of vapour velocity on condensate retention on horizontal pin-fin tubes. Cuce and 
Cuce [15] conducted a successful application of the homotopy perturbation method for efficiency and 
effectiveness assessment of longitudinal porous fins. Futher, Turkyilmazoglu [16] analyzed the 
stretching/shrinking longitudinal fins of rectangular profile and heat transfer. 
 Motivated by these studies, the main aim of the present paper is to study the thermal analysis of a 
fully wet porous radial fin with natural convection and radiation. Radial fins are used in numerous 
applications where porous fins can provide a lighter, cheaper and superior alternative to solid metallic fins. 
The energy equation governing this problem appears in the form of an ordinary differential equation 
containing three nonlinear terms. A numerical procedure is adopted to find the solution of the problem for 
different pertinent parameters. The present formulation characterizes the effect of the ambient temperature in 
a different manner and  provides a better picture of the effect of the ambient temperature on the thermal 
performance of the fin.  
      In computational mechanics or numerical simulations, the spectral collocation method (SCM) is one 
of the spectral methods, which are high order numerical methods and can provide an exponential node 
convergence rate (in other words, spectral accuracy) [17, 18]. Due to the mathematical simplicity and 
computational efficiency, the SCM has turned out to be an efficient tool in science and engineering 
applications, such as computational fluid dynamics [19, 20], magneto-hydrodynamics [21] and thermal 
radiation heat transfer [22]. To the best of our knowledge, the SCM has not been applied to analyze the heat 
transfer in a fully wet porous radial fin with natural convection and radiation.  
 
2. Mathematical analysis 

 
 Consider a fully wet radial fin of base radius br , tip radius tr  and thickness t  as illustrated in Fig.1. 

The base of the fin is maintained at a constant temperature bT . The tip of the fin is assumed to be adiabatic. 

The fin is made of a porous material of the effective thermal conductivity effk  and permeability K . The fin 

is in contact with an ambient fluid which infiltrates through the fin following Darcy’s law. The fluid has a 
specific heat fpc , , density f , kinematic viscosity f , thermal conductivity fk  and coefficient of 

volumetric expansion f . The exposed surfaces (top and bottom) are assumed to be gray with a constant 

emissivity   and emit radiation to the ambient fluid (temperature bT ), which also serves as the radiation heat 

sink. 
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Fig.1. Porous radial fin geometry and energy balance. 

 
 Making an energy balance on an element of the fin (Fig.1) of circumference 2 r , thickness t  and 
radial height dr , we get  
 
  r r dr conv radq q q q =0    (2.1) 
 
where  

  
   

 

( )

( ) ,

r r dr D fg a

a

d dT
q q = k 2 rt dr 2 rh i 1 dr

dr dr

h2 rdr 1 T T


          
 

    
 (2.2) 

 

     ,4 4
rad f a aq = 2 F 2 rdr T T    (2.3) 

 
      conv f p, f aq = 2 r 2 rdr c T T     (2.4) 

 
where Eq.(2.2) is based on the application of Fourier’s law of heat conduction, Eq.(2.3) is the radiative heat 
losses from the top and bottom faces of the fin and Eq.(2.4) is the rate of change of enthalpy of the buoyant 
fluid (infiltrate) passing through the fin. This is the rate at which the energy is removed from the fin by the 
buoyancy induced flow through the fin. The velocity of the buoyancy driven flow  r  at any radiation 

location r is obtained by applying Darcy’s law as follows 
 

     a

f

g T T
r = .

 



 (2.5) 

 
 Substituting Eqs (2.2)-(2.5) into Eq.(2.1) leads to the following nonlinear ordinary differential 
equation governing the temperature distribution in the fin 
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 We consider the heat transfer coeeficient, h to vary as given by Torabi and Zhang [23] 
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 Let 
 

       eff 0 a 0 ak = k 1 T T = k 1 m        (2.7) 

 

where 0k =  effective thermal conductivity at aT  and bm= T . 

 The boundary conditions at the fin’s base and at its tip may be written as  
 

  ,=,= bb TTrr  (2.8) 
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 (2.9) 

 
 Introduce the following dimensionless quantities 
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 Rewrite Eqs (2.6)-(2.9) in dimensionless form as follows 
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   ,R = 1 R = 1 , (2.13) 

 

  .* d
R = R , = 0

dR


 (2. 14) 

 
 Equation (2.12) is a nonlinear ordinary differential equation. It contains three nonlinear terms, first 
nonlinearity is due to the natural convective transport of energy by the infiltrate. This energy is the rate at 
which the enthalpy of the infiltrate increases as it flows through the porous fin. The second nonlinear term is 
associated with the surface radiative heat transfer from the fin to the ambient fluid which also serves as the 
radiation sink. The third term is related to moisture in the air with its latent heat of evaporation. 
 It may be noted that the parameter Nc is a combination of Darcy’s number Da, Rayleigh number Ra, 
the thermal conductivity ratio rK  and the ratio of  the fin base radius to fin thickness. The parameter Nr 

indicates the role of surface radiation relative to conduction in the fin. The parameter a  is the ratio of 
ambient fluid temperature and the base temperature. 
 The heat flow through the fin, q , can be found by applying Fourier’s law at the base of the fin 
giving  
 

     0 b a b r=rb

dT
q = k 1 T T 2 r t |

dr
     , (2.15) 

 
or dimensionless form as  
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 In this paper, we solve Eq.(2.12) with boundary conditions (2.13) and (2.14) by a spectral collocation 
method [17, 18]. 
 
3. Numerical method 
 
 For convenience of analysis, the energy Eq.(2.12) can be rewritten as 
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 (3.1) 

 
 Equation (3.1) is a strong nonlinear ordinary differential equation. Applying the spectral collocation 
method, Eq.(3.1) can be rearranged as 
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where 
( )!

( )! !

p 1 p 1

k p k 1 k

  
    

 and *  denote the last iterative value of dimensionless temperature. 

 The Chebyshev-Gausse-Lobatto collocation points are used for spatial discretization of the 
dimensionless energy conservation equation 
 

                             

( )
cos , , ,..., .i

i 1
i 1 2 N

N 1

       
                                            (3.3) 

 
 The above collocation points take values in the interval [-1, 1]. First, the mapping of an arbitrary 
interval [ , ]1 2R R R  to a standard interval [ , ]1 1   is needed to fit the requirement of the Chebyshev 
polynomial 
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 The dimensionless unknown temperature can be approximated by the Chebyshev polynomial as 
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first kind Chebyshev polynomial. The polynomial of degree N  defined by Eq.(3.5) can be the Lagrange 
interpolation polynomial based on the set  i  like 
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where )(ih  is a function of the first order derivative of the Chebyshev polynomial, and its detailed 

definition can be found in [17,18] 
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 To avoid spectral cofficients solution and fast cosine transformation, we use Eq.(3.6) in Eq.(3.2). 
One can obtain the spectral discretized algebraic equation 
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where the element of expressions for matrices A, B are 
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where ( )1
ijD

  
and ( )2

ijD  are entries of the first order and the second order derivative coefficient matrices, 

respectively. Their detailed computation can be written as [17, 18]. 
 After imposing the Dirichlet and Neumann boundary conditions (Eqs (2.13) and (2.14)), we can 
write the matrix form of the above Eq.(3.9) as follows 
 

  ˆ ˆ, , , ...,
N

1 ij j i
j 2

1 A B i 2 N


     .                                  (3.12) 

 
 The implementation of the spectral collocation method for solving the thermal performance of a fully 
wet porous radial fin with natural convection and radiation can be executed through the following routine: 
Step 1.  Input the number of collocation points, and compute the coordinate value of nodes, the first and 

second order derivative matrix. 

Step 2.  Initialize the value of dimensionless temperature initial *  assumptions (zero for example) in all 
directions except of boundaries. 

Step 3.  Assemble matrices A and B by Eqs (3.10), (3.11). 

Step 4.  Impose boundary conditions in Eqs (2.13) and (2.14), and compute matrices Â  and B̂ .  
Step 5.  Terminate the iteration if the maximum absolute difference of the last and present dimensionless 

temperature is less than the tolerance ( 1210  for example), otherwise go back to step 3. 
Step 6.  Compute the dimensionless temperature and base heat flow.  
 
4. Results and discussion 

 
 The thermal analysis of a fully wet porous radial fin with natural convection and radiation is studied 
numerically. The obtained non-dimensionalized ordinary differential equations involving two nonlinear 
terms, associated with the buoyancy effects in the fluid and the permeability of the porous medium and with 
a consequence of radiative cooling at the surface of the fin, are solved numerically using the spectral 
collocation method. The effects of the different parameters as mentioned above are studied with the aid of 
plotted graphs. 
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 Figure 2 shows the temperature distributions for different values of Nc i.e., the buoyancy parameter. 
From this plot one can see that as Nc increases the temperature distribution decreases.  The effect of the 
radiation parameter Nr on the temperature profile is as shown in Fig.3. Here we can see that as the radiation 
parameter increases the temperature profile decreases. It proves that the radiation parameter quite effectively 
controls the temperature, so it has an important role in cooling the system. 
 

 
 

Fig.2. Temperature distributions at , , , ,a 2= 0.6 Nr = 5 m= 0.1 m 1 p 2    and *R = 5 , for different values of Nc. 
 

 
 

Fig.3. Temperature distributions at , Nc , , ,a 2= 0.4 = 10 m= 1 m 1 p 2    and *R = 5 , for different values of Nr. 
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 Figure 4 shows the effect of the dimensionless ambient temperature parameter a  on the temperature 

profile. From this one can realize that as a  increases the temperature profile increases. Further observations 
show that there is a rapid change in the temperature profile with the ambient temperature parameter. 
 

 
 

Fig.4. Temperature distributions at , Nc , , . ,2Nr = 10 = 50 m= 0 m 0 1 p 1   and *R = 5 , for different values of a . 
 

 The role of 2m  on the temperature profile is plotted in Fig.5. It shows that as 2m  increases the 
temperature profile decreases. Figures 6 and 7 respectively show the importance of the thermal conductivity 
parameter m and p on the temperature profile. From this we can see that as m and p increase the temperature 
profile also increases. This shows that the thermal conductivity parameter and p help in enhancing the 
temperature profile.  
 

 
Fig.5. Temperature distributions at , , , Nc ,a = 0.6 Nr = 5 m= 0.1 1 p 1    and *R = 2 , for different values of 2m . 
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Fig.6.  Temperature distributions at , , Nc , ,a 2= 0.2 Nr = 1 50 m 10 p 1     and .*R = 1 5 , for different 
values of m. 

 

 
 

Fig.7. Temperature distributions at , , Nc , ,a 2= 0.2 Nr = 1 1 m= 0.1 m 1    and *R = 5 , for different values of p. 
 
 Figure 8 shows the effect of the radiation parameter Nr and buoyancy parameter Nc on the 
dimensionless heat flow. From this figure we can see the rapid increase in dimensionless heat flow for 
increasing values of Nc and Nr. From Fig.9 one can see the role of the ambient fluid temperature a  and 

ratio of tip radius to base radius *R  on the dimensionless heat flow. This figure shows that the dimensionless 
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heat flow increases with an increase in both the ambient fluid temperature a  and the ratio of tip radius to 

base radius *R . Further observation shows that as the tip radius of the fin increases the dimensionless heat 
flow also increases whereas one can find the reverse trend with the base radius of the fin. 
 

 
 

Fig.8.  Dimensionless base heat flow: effect of natural convection and radiation when 

, , , , *
a 2= 0.2 m = 1 m 10 p 2 R = 5   . 

 

 
 

Fig.9.  Dimensionless base heat flow: effect of natural convection and ambient temperature when 
, Nc , . , ,2Nr 5 1 m= 0 1 m 10 p 2    . 
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 The effect of both the ambient fluid temperature a  and the radiation parameter Nr on the 
dimensionless heat flow is plotted in Fig.10. It shows that the increasing values of ambient fluid temperature 

a  and radiation parameter Nr will enhance the dimensionless heat flow rapidly. A similar effect on 

dimensionless heat flow can be seen with the combined effects of radiation parameter Nr with p and 2m   and 
these are plotted in Figs 11 and 12, respectively.  
 

 
 

[Fig.10.  Dimensionless base heat flow: effect of radiationand ambient temperature when 
*Nc , . , , ,250 m = 0 1 m 10 p 1 R 5    . 

 

 
 

Fig.11.  Dimensionless base heat flow: effect of radiation and p when 
*. , Nc , . , ,a 20 8 50 m = 0 1 m 10 R 2      
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Fig.12.  Dimensionless base heat flow: effect of radiation and 2m  when 

*. , Nc , , ,a 0 6 100 m = 1 p 2 R 2     . 
 

 Further, Fig.13 shows the effect of the ratio of tip radius to base radius *R  and p on dimensionless 

heat flow. From this one can see that dimensionless heat flow increases with an increase in both *R  and p. It 
shows that as the tip radius of the fin increases, the dimensionless heat flow increases, whereas one can find 
the reverse trend with the base radius of the fin. 
 

 
 

Fig.13.  Dimensionless base heat flow: effect of natural convection and p when 
. , , Nc , ,a 20 4 Nr 1 10 m= 1 m 1     . 
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5. Concluding remarks 

 
 A numerical solution for the thermal analysis of a fully wet porous radial fin with natural convection 
and radiation is obtained with the classic Newton iteration method. The effects of different dimensionless 
parameters on temperature and dimensionless heat flow are studied with the aid of plotted graphs. Some 
important findings of the problem are as follows: 
 The temperature profiles decrease with increasing values of the buoyancy parameter, radiation parameter, 

and 2m . 

 The effects of the ambient fluid temperature, thermal conductivity parameter, and p are in favor of the 
temperature profile. 

 The combined effects of the radiation parameter with buoyancy parameter, ambient fluid temperature, p, 
and 2m  are in favor of the dimensionless heat flow. 

 The dimensionless heat flow increases with increasing values of the ambient fluid temperature with the 
ratio of tip radius to base radius and p. 

 The dimensionless heat flow increases with increasing values of the tip radius of the fin and decreases 
with increasing values of the base radius of the fin.  
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Nomenclature 
 
 ,p fc   – specific heat of the nambient fluid 

 D – Chebyshev spectral differentiation matrix 
 Da – Darcy number 
 f aF    – shape factor for radiation heat transfer 

 g – acceleration due to gravity 
 rK   – thermal conductivity ratio 

 k – thermal conductivity of ambient fluid 
 effk   – effective thermal conductivity of porous fin 

 L – length of the fin 
 m – thermal conductivity parameter  

 
, ,  ,0 1

2 0 1

m m p

m m m 
  – constants defined in Eq.(2.11) 

 Nc – Buoyancy or natural convection parameter 
 Nr – radiation parameter 
 Q – dimentionless base heat flow 
 q – base heat flow 
 R – dimensionless radius 

 *R   – ratio of tip radius to base radius 
 r – tadial coordinate 
 br   – base radius 

 tr   – tip radius 

 T – local fin temperature 
 aT   – ambient temperature 

 bT   – base temperature 

 t – Fin thickness 
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   f   – thermal diffusivity of ambient fluid 

 f   – volumetric thermal expansion coefficient of the ambient fluid 

    – surface emissivity of fin 
    – non-dimensional temperature 
 a   – dimensionless ambient temperature 

 f   – density of the ambient fluid 

    – Stefan-Boltzmann constant 
 f  – kinematic viscosity of the ambient fluid 
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