PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Hazard modeling for hydrogen refueling stations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The need to reduce greenhouse gas emissions in various sectors, including road transport, has resulted in the development of investments relating to the use of hydrogen as a fuel in motor vehicles. Currently, there are six hydrogen refueling stations located in Poland, and the construction of another 13 is in the planning phase. By storing flammable gas, these facilities may pose a threat to the environment, in particular, if they become the target of foreign armed forces or terrorist activities. This article presents the effects of an event that resulted in the mechanical damage of a compressed hydrogen tank. The ALOHA program is used to analyze the impact of the threat. Two event scenarios are considered for summer and winter conditions. The simulation results indicate that the most dangerous effect of the attack may be the overpressure resulting from the explosion of the vapor cloud, ignited as a result of detonation after the leakage of the tank. It is, therefore, reasonable to designate safety zones around such objects in order to minimize the effects of accidental release.
Rocznik
Strony
5--12
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • West Pomeranian University of Technology in Szczecin Faculty of Maritime Technology and Transport 41 Piastów Av., 71-065 Szczecin, Poland
  • West Pomeranian University of Technology in Szczecin Faculty of Maritime Technology and Transport 41 Piastów Av., 71-065 Szczecin, Poland
  • Lublin University of Technology, Faculty of Mechanical Engineering 36 Nadbystrzycka St., 20-618 Lublin, Poland
Bibliografia
  • 1. Alasali, F., Abuashour, M.I., Hammad W., Almomani, D., Obeidat, A.M. & Holderbaum, W. (2024) A review of hydrogen production and storage materials for efficient integrated hydrogen energy systems. Energy Science & Engineering 12 (5), pp. 1934–1968, doi: 10.1002/ese3.1723.
  • 2. Boretti, A. (2020) Hydrogen internal combustion engines to 2030. International Journal of Hydrogen Energy 45 (43), pp. 23692–23703, doi: 10.1016/j.ijhydene.2020.06.022.
  • 3. Bosu, S. & Natarajan, R. (2024) Recent advancements in hydrogen storage—Comparative review on methods, operating conditions and challenges. International Journal of Hydrogen Energy 52 (8), pp. 352–370, doi: 10.1016/j. ijhydene.2023.01.344.
  • 4. Cirrone, D., Makarov, D., Kuznetsov, M., Friedrich, A. & Molkov, V. (2022) Effect of heat transfer through the release pipe on simulations of cryogenic hydrogen jet fires and hazard distances. International Journal of Hydrogen Energy 47 (50), pp. 21596–21611, doi: 10.1016/j. ijhydene.2022.04.276.
  • 5. Directive EU (2010) Directive 2010/75/EU of the European Parliament and the Council on industrial emissions.
  • 6. Directive EU (2015) Directive 2015/2193/EU on the limitation of emissions of certain pollutants into the air from MCPs.
  • 7. GasHD.eu (2023) Hydrogen stations in Poland. [Online]. Available from: http://gashd.eu/en/hydrogen-stations-inpoland/ [Accessed: May 15, 2024].
  • 8. Ge, L., Zhang, B. & Huang, W. (2024) A review of hydrogen generation, storage, and applications in power system. Journal of Energy Storage 75 (1), 109307, doi: 10.1016/j. est.2023.109307.
  • 9. Genovese, M., Blekhman, D. & Fragiacomo, P. (2024) An exploration of safety measures in hydrogen refueling stations: delving into hydrogen equipment and technical performance. Hydrogen 5, pp. 102–122, doi: 10.3390/ hydrogen5010007.
  • 10. He, Y., Pu, L., Sun, R., Yan, T., Tan, H. & Zhang, Z. (2024) Development and application of hydrogen flare radiation model for assessing hazard distance. International Journal of Hydrogen Energy 49, Part C, pp. 1161–1173, doi: 10.1016/j.ijhydene.2023.06.319.
  • 11. Holnicki, P., Kałuszko, A. & Trapp, W. (2016) An urban scale application and validation of the CALPUFF model. Atmospheric Pollution Research 7 (3), pp. 393–402, doi: 10.1016/j.apr.2015.10.016.
  • 12. Huang, Y. & Ma, G. (2018) A grid-based risk screening method for fire and explosion events of hydrogen refuelling stations. International Journal of Hydrogen Energy 43 (1), pp. 442–454, doi: 10.1016/j.ijhydene.2017.10.153.
  • 13. IMGW-PIB (2021) Meteorological Yearbook 2021. URL: https://dane.imgw.pl/ [Accessed: May 19, 2024].
  • 14. Jones, R., Lehr, W., Simecek-Beatty, D. & Reynolds, R.M. (2013) ALOHA® (Areal Locations of Hazardous Atmospheres) 5.4.4. Technical Documentation. National Oceanic and Atmospheric Administration. Available from: https://response.restoration.noaa.gov/sites/default/files/ ALOHA_Tech_Do.
  • 15. Kaczmarek, M. (2023) Polsat inwestuje w Szczecinie. Obiekt Zygmunta Solorza powstanie na Prawobrzeżu. [Online]. Available from: https://wszczecinie.pl/polsat-inwestuje-w-szczecinie-obiekt-zygmunta-solorza-powstanie-na-prawobrzezu/43355 [Accessed: February 01, 2023].
  • 16. Kane, M. (2019) InsideEVs Hydrogen Fueling Station Explodes: Toyota & Hyundai Halt Fuel Cell Car Sales. [Online]. Available form: https://insideevs.com/news/354223/ hydrogen-fueling-station-explodes/ [Accessed: March 01, 2023].
  • 17. Keçebaş, A. & Kayfeci, M. (2019) Hydrogen properties. In: Calise, F., Dentice D’Accadia, M., Santarelli, M., et al. (eds.), Solar Hydrogen Production: Processes, Systems and Technologies (3-29) CA: Academic Press.
  • 18. Keršys, A., Kalisinskas, D., Pukalskas, S., Vilkauskas, A., Kersys, R. & Makaras, R. (2013) Investigation of the influence of hydrogen used in internal combustion engines on exhaust emission. Eksploatacja i Niezawodność – Maintenance and Reliability 15 (4), pp. 384–389.
  • 19. NEL (2016) H2Station Hydrogen Safety Plan for Everfuel—hydrogen fueling network in California. Revision date: 07.08.2016. Retrieved from: https://nelhydrogen.com [Accessed: January 16, 2024].
  • 20. NEL (2024) H2Station Datasheet. Retrieved from: https:// nelhydrogen.com/hydrogen-fueling-equipment/ [Accessed: January 16, 2024].
  • 21. Olm, C., Zsély, I.G., Pálvölgyi, R., Varga, T., Nagy, T., Curran, H.J. & Turányi, T. (2014) Comparison of the performance of several recent hydrogen combustion mechanisms. Combustion and Flame 161 (9), pp. 2219–234, doi: 10.1016/j.combustflame.2014.03.006.
  • 22. Onorati, A., Payri, R., Vaglieco, B.M., Agarwal, A.K., Bae, C., Bruneaux, G., Canakci, M., Gavaises, M., Günthner, M., Hasse, C., Kokjohn, S., Kong, S.- C., Moriyoshi, Y., Novella, R., Pesyridis, A., Reitz, R., Ryan, T., Wagner, R. & Zhao, H. (2022) The role of hydrogen for future internal combustion engines. International Journal of Engine Research 23 (4), pp. 529–540, doi: 10.1177/14680874221081947.
  • 23. Pagliaro, M. & Iulianelli, A. (2020) Hydrogen refueling stations: Safety and sustainability. General Chemistry 6, 190029, doi: 10.21127/yaoyigc20190029.
  • 24. Połeć, B. & Tępiński, J. (2019) Metody i narzędzia wspomagające proces oceny ryzyka awarii w zakładach przemysłowych. Józefów: Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego, Państwowy Instytut Badawczy.
  • 25. Qian, J.-Y., Li, X.-J., Gao, Z.-X. & Jin, A.-J. (2020) A numerical study of hydrogen leakage and diffusion in a hydrogen refueling station. International Journal of Hydrogen Energy 45 (28), pp. 14428–14439, doi: 10.1016/j. ijhydene.2020.03.140.
  • 26. Rampai, M.M., Mtshali, C.B., Seroka, N.S. & Khotseng, L. (2024) Hydrogen production, storage, and transportation: recent advances. RSC Advances 14, pp. 6699–6718, doi: 10.1039/D3RA08305E.
  • 27. Sakamoto, J., Mison, H., Nakayama, J., Kasai, N., Shibutani, T. & Miyake, A. (2018) Evaluation of safety measures of a hydrogen fueling station using physical modeling. Sustainability 10 (11), 3846, doi: 10.3390/su10113846.
  • 28. Sakamoto, J., Sato, R., Nakayama, J., Kasai, N., Shibutani, T. & Miyake, A. (2016) Leakage-type-based analysis of accidents involving hydrogen fueling stations in Japan and USA. International Journal of Hydrogen Energy 41 (46), pp. 21564–21570, doi: 10.1016/j.ijhydene.2016.08.060.
  • 29. Siadkowska, K., Barański, G., Sochaczewski, R. & Wendeker, M. (2022) Experimental investigation on indicated pressure and heat release for direct hydrogen injection in a dual fuel diesel engine. Advances in Science and Technology Research Journal 16 (3), pp 54–66, doi: 10.12913/22998624/149300.
  • 30. Smirnov, N.N. & Nikitin, V.F. (2014) Modeling and simulation of hydrogen combustion in engines. International Journal of Hydrogen Energy 39 (2), pp 1122–1136, doi: 10.1016/j.ijhydene.2013.10.097.
  • 31. Tuśnio, N. (2020) Analiza numeryczna zdarzenia związanego z niekontrolowanym uwolnieniem amoniaku z cysterny kolejowej. Problemy Kolejnictwa – Railway Reports 64 (187), pp. 51–57, doi: 10.36137/1876P.
  • 32. Zhang, F., Zhao, P., Niu, M. & Maddy, J. (2016) The survey of key technologies in hydrogen energy storage. International Journal of Hydrogen Energy 41 (33), pp. 14535– 14552, doi: 10.1016/j.ijhydene.2016.05.293.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1712758b-b3ec-4146-a654-1113fbae9bb9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.