PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mathematical forecasting composition of secondary carbides in the single-crystal superalloys

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Predicting the specifics of the distribution of alloying elements between secondary carbides, their topology, and morphology, as well as the composition for a single-crystal multicomponent system of the type Ni-11.5Cr-5Co-3.6Al-4.5Ti-7W-0.8Mo-0.06C using the calculated CALPHAD (passive experiment) versus scanning electron microscopy (active experiment). Design/methodology/approach: This work presents the results of studies of the distribution of chemical elements in the composition of carbides, depending on their content in the system. The studies were carried out using an electron microscope with computer analysis of images and chemical composition. Findings: It was found that the influence of alloying elements on the composition of carbides is complex and is described by complex dependencies that correlate well with the obtained experimental results. Research limitations/implications: An essential problem is the prediction of the structure and properties of superalloys without or with a minimum number of experiments. Practical implications: The obtained dependencies can be used both for designing new superalloys and for improving the compositions of industrial alloys. Originality/value: The value of this work is that the obtained dependences of the influence of alloying elements on the dissolution (precipitation) temperatures and the distribution of elements in secondary carbides in the superalloy of the Ni-11.5Cr-5Co-3.6Al-4.5Ti-7W- 0.8Mo-0.06C system. It was found that changes in the course of the curves of temperature dependence on the element content closely correlate with thermodynamic processes occurring in the system, that is, the curves exhibit extrema accompanying the change in the stoichiometry of carbides or the precipitation of new phases.
Rocznik
Strony
34--41
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
  • Zaporizhzhia Polytechnic National University, 64 Zhukovskogo str., 69063, Zaporizhzhia, Ukraine
  • Zaporizhzhia Polytechnic National University, 64 Zhukovskogo str., 69063, Zaporizhzhia, Ukraine
Bibliografia
  • [1] O.M. Horst, D. Schmitz, J. Schreuer, P. Git, H. Wang, C. Körner, G. Eggeler, Thermoelastic properties and γ’- solvus temperatures of single-crystal Ni-base superalloys, Journal of Materials Science 56 (2021) 7637-7658. DOI: https://doi.org/10.1007/s10853-020- 05628-w
  • [2] B. Chen, W.-P. Wu, M.-X. Chen, Orientation- Dependent Morphology and Evolution of Interfacial Dislocation Networks in Ni-Based Single-Crystal Superalloys: A Molecular Dynamics Simulation, Acta Mechanica Solida Sinica 34 (2021) 79-90. DOI: https://doi.org/10.1007/s10338-020-00172-1
  • [3] M. Mazzarisi, S.L. Campanelli, A. Angelastro, F. Palano, M. Dassisti, In situ monitoring of direct laser metal deposition of a nickel-based superalloy using infrared thermography, The International Journal of Advanced Manufacturing Technology 112 (2021) 157- 173. DOI: https://doi.org/10.1007/s00170-020-06344-0
  • [4] W. Song, X.-G. Wang, J.-G. Li, Y.-S. Huang, J. Meng, Y.-H. Yang, J.-L. Liu, J.-D. Liu, Y.-Z. Zhou, X.-F. Sun, Role of Ru on the Microstructural Evolution During Long-Term Aging of Ni-Based Single Crystal Superalloys, Acta Metallurgica Sinica (English Letters) 33 (2020) 1689-1698. DOI: https://doi.org/10.1007/s40195-020-01110-3
  • [5] O.I. Balyts'kyi, O.O. Krokhmal'nyi, Pitting corrosion of 12Kh18AG18Sh steel in chloride solutions, Materials Science 35 (1999) 389-394. DOI: https://doi.org/10.1007/BF02355483
  • [6] A. Borouni, A. Kermanpur, Effect of Ta/W Ratio on Microstructural Features and Segregation Patterns of the Single Crystal PWA1483 Ni-Based Superalloy, Journal of Materials Engineering and Performance 29 (2020) 7567-7586. DOI: https://doi.org/10.1007/s11665-020-05189-8
  • [7] S. Yang, J. Yun, C.-S. Seok, Rejuvenation of IN738LC gas-turbine blades using hot isostatic pressing and a series of heat treatments, Journal of Mechanical Science and Technology 34 (2020) 4605-4611. DOI: https://doi.org/10.1007/s12206-020-1018-2
  • [8] B. Yin, G. Xie, X. Jiang, S. Zhang, W. Zheng, L. Lou, Microstructural Instability of an Experimental Nickel- Based Single-Crystal Superalloy, Acta Metallurgica Sinica (English Letters) 33 (2020) 1433-1441. DOI: https://doi.org/10.1007/s40195-020-01057-5
  • [9] A. Pandey, K.J. Hemker, Temperature Dependence of the Anisotropy and Creep in a Single-Crystal Nickel Superalloy, JOM 67 (2015) 1617-1623. DOI: https://doi.org/10.1007/s11837-015-1414-8
  • [10] L. Chai, J. Huang, J. Hou, B. Lang, L, Wang, Effect of Holding Time on Microstructure and Properties of Transient Liquid-Phase-Bonded Joints of a Single Crystal Alloy, Journal of Materials Engineering and Performance 24 (2015) 2287-2293. DOI: https://doi.org/10.1007/s11665-015-1504-3
  • [11] A.A. Glotka, S.V. Gaiduk, Distribution of Alloying Elements in the Structure of Heat-Resistant Nickel Alloys in Secondary Carbides, Journal of Applied Spectroscopy 87 (2020) 812-819. DOI: https://doi.org/10.1007/s10812-020-01075-2
  • [12] O.I. Balyts’kyi, L.M. Ivas’kevych, V.M. Mochul’s’kyi, Mechanical properties of martensitic steels in gaseous hydrogen, Strength of Materials 44 (2012) 64-71. DOI: https://doi.org/10.1007/s11223-012-9350-0
  • [13] C.Z. Zhu, R. Zhang, C.Y. Cui, Y.Z. Zhou, Y. Yuan, Z.S. Yu, X. Liu, X.F. Sun, Effect of Ta Addition on the Microstructure and Tensile Properties of a Ni-Co Base Superalloy, Metallurgical and Materials Transactions A 52 (2021) 108-118. DOI: https://doi.org/10.1007/s11661-020-06081-9
  • [14] S.A. Oh, R.E. Lim, J.W. Aroh, A.C. Chuang, B.J. Gould, J.V. Bernier, N. Parab, T. Sun, R.M. Suter, A.D. Rollett, Microscale Observation via High-Speed X-ray Diffraction of Alloy 718 During In Situ Laser Melting, JOM 73 (2021) 212-222. DOI: https://doi.org/10.1007/s11837-020-04481-1
  • [15] Y. Chen, H.M. Wang, Growth morphologies and mechanisms of non-equilibrium solidified MC carbide, Journal of Materials Research 21 (2006) 375-379. DOI: https://doi.org/10.1557/jmr.2006.0043
  • [16] Y.H. Kong, Q.Z. Chen, D.M. Knowles, Effects of minor additions on microstructure and creep performance of RR2086 SX superalloys, Journal of Materials Science 39 (2004) 6993-7001. DOI: https://doi.org/10.1023/B:JMSC.0000047543.64750.83
  • [17] S. Tin, T.M. Pollock, W. Murphy, Stabilization of thermosolutal convective instabilities in Ni-based single-crystal superalloys: Carbon additions and freckle formation, Metallurgical and Materials Transactions A 32 (2001) 1743-1753. DOI: https://doi.org/10.1007/s11661-001-0151-5
  • [18] N.V. Petrushin, E.M. Visik, M.A. Gorbovets, R.M. Nazarkin, Structure–phase characteristics and the mechanical properties of single-crystal nickel-based rhenium-containing superalloys with carbide– intermetallic hardening, Russian Metallurgy (Metally) 2016 (2016) 630-641. DOI: https://doi.org/10.1134/S0036029516070119
  • [19] O.I. Balyts’kyi, L.M. Ivas’kevych, J.J. Eliasz, Static Crack Resistance of Heat-Resistant KhN43MBTYu Nickel-Chromium Alloy in Gaseous Hydrogen, Strength of Materials 52 (2020) 386-397. DOI: https://doi.org/10.1007/s11223-020-00189-4
  • [20] Z. Yu, J. Qiang, J. Zhang, L. Liu, Microstructure evolution during heat treatment of superalloys loaded with different amounts of carbon, Journal of Materials Research 30 (2015) 2064-2072. DOI: https://doi.org/10.1557/jmr.2015.127
  • [21] G.D. Pigrova, A.I. Rybnikov, Carbide phases in a multicomponent superalloy Ni-Co-W-Cr-Ta-Re, The Physics of Metals and Metallography 114 (2013) 593-595. DOI: https://doi.org/10.1134/S0031918X13070089
  • [22] O.A. Glotka, Modelling the composition of carbides in nickel-based superalloys of directional crystallization Journal of Achievements in Materials and Manufacturing Engineering 102/1 (2020) 5-15. DOI: https://doi.org/10.5604/01.3001.0014.6324
  • [23] H. Ohtani, The CALPHAD Method, in: H. Czichos, T. Saito, L. Smith (eds.), Springer Handbook of Materials Measurement Methods, Springer Handbooks, Springer, Berlin, Heidelberg, 2006, 1001-1030. DOI: https://doi.org/10.1007/978-3-540-30300-8_20
  • [24] N. Saunders, U.K.Z. Guo, X. Li, A.P. Miodownik, J.-Ph. Schillé, Using JMatPro to model materials properties and behavior, JOM 55 (2003) 60-65. DOI: https://doi.org/10.1007/s11837-003-0013-2
  • [25] S. Xiang, S. Mao, Z. Shen, H. Long, H. Wei, S. Ma, J.X. Zhang, Y. Chen, J. Zhang, B. Zhang, Y. Liu, Site preference of metallic elements in M23C6 carbide in a Ni-based single crystal superalloy, Materials and Design 129 (2017) 9-14. DOI: https://doi.org/10.1016/j.matdes.2017.05.023
  • [26] X.B. Hu, Y.L. Zhu, L.Z. Zhou, B. Wu, X.L. Ma, Atomic imaging of the interface between M23C6-type carbide and matrix in a long-term ageing polycrystalline Ni-based superalloy, Philosophical Magazine Letters 95/4 (2015) 237-244. DOI: https://doi.org/10.1080/09500839.2015.1039621
  • [27] R. Yong-Hua, G. Yong-Xiang, H.G. Xiang, Characteri-zation of M23C6 carbide precipitated at grain boundaries in a superalloy, Metallography 22/1 (1989) 47-55. DOI: https://doi.org/10.1016/0026-0800(89)90021-9
  • [28] A. Balitskii, Hydrogen assisted crack initiation and propagation in nickel-cobalt heat resistant superalloys, Procedia Structural Integrity 16 (2019) 134-140. DOI: https://doi.org/10.1016/j.prostr.2019.07.032
  • [29] O.A. Glotka, S.V. Haiduk, Distribution of elements in carbides of multicomponent Superalloys, Metallofizika i Noveishie Tekhnologii 42/6 (2020) 869-884 (in Russian). DOI: https://doi.org/10.15407/mfint.42.06.0869
  • [30] A. Glotka, V. Ol’shanetskii, Prediction thermo-physical characteristics heat-resistant nickel alloys directional crystallization, Acta Metallurgica Slovaca 27/2 (2021) 68-71. DOI: https://doi.org/10.36547/ams.27.2.813
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1708cf35-3a55-4deb-9148-7305874f2fa2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.