PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recognition of Acoustic Signals of Induction Motors with the Use of MSAF10 and Bayes Classfier

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Condition monitoring of deterioration in the metallurgical equipment is essential for faultless operation of the metallurgical processes. These processes use various metallurgical equipment, such as induction motors or industrial furnaces. These devices operate continuously. Correct diagnosis and early detection of incipient faults allow to avoid accidents and help reducing financial loss. This paper deals with monitoring of rotor electrical faults of induction motor. A technique of recognition of acoustic signals of induction motors is presented. Three states of induction motor were analyzed. Studies were carried out for methods of data processing: Method of Selection of Amplitudes of Frequencies (MSAF10) and Bayes classifier. Condition monitoring is helpful to protect induction motors and metallurgical equipment. Further researches will allow to analyze other metallurgical equipment.
Słowa kluczowe
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Electrical Engineering Automatics, Computer Science and Biomedical Engineering Departament of Automatics and Biomedical Engineering, Al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] B. Bedkowski, M. Baranski, Electrical machine with permanent magnets as a vibration sensor - a test stand model, 2014 International Conference on Electrical Machines (ICEM), 1590-1593 (2014).
  • [2] D. Pleban, Definition and Measure of the Sound Quality of the Machine, Archives of Acoustics 39, 1, 17-23 (2014).
  • [3] L. Jedlinski, J. Caban, L. Krzywonos, S. Wierzbicki, F. Brumercik, Application of vibration signal in the diagnosis of IC engine valve clearance, Journal of Vibroengineering 17, 1, 175-187 (2015).
  • [4] B. Bedkowski, J. Madej, The innovative design concept of thermal model for the calculation of the electromagnetic circuit of rotating electrical machines, Eksploatacja i Niezawodnosc - Maintenance and Reliability 17, 4, 481-486 (2015).
  • [5] I. El-Thalji, E. Jantunen, A summary of fault modelling and predictive health monitoring of rolling element bearings. Mechanical Systems and Signal Processing 60-61, 252-272 (2015).
  • [6] A. Glowacz, A. Glowacz, Z. Glowacz, Recognition of Thermal Images of Direct Current Motor with Application of Area Perimeter Vector and Bayes Classifier, Measurement Science Review 15, 3, 119-126 (2015).
  • [7] J. Barglik, A. Smalcerz, R. Przylucki, I. Dolezel, 3D modeling of induction hardening of gear wheels, Journal of Computational and Applied Mathematics 270, 231-240 (2014).
  • [8] M. Michalak, M. Sikora, J. Sobczyk, Analysis of the longwall conveyor chain based on a harmonic analysis, Eksploatacja i Niezawodnosc - Maintenance and Reliability 15, 4, 332-336 (2013).
  • [9] A. Glowacz, Recognition of Acoustic Signals of Loaded Synchronous Motor Using FFT, MSAF-5 and LSVM, Archives of Acoustics 40, 2, 197-203 (2015).
  • [10] E. Kupiec, W. Przyborowski, Magnetic equivalent circuit model for unipolar hybrid excitation synchronous machine, Archives of Electrical Engineering 64, 1, 107-117 (2015).
  • [11] T. Wegiel, M. Sulowicz, D. Borkowski, A distributed system of signal acquisition for induction motors diagnostic, 2007 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics & Drives, Cracow, Poland, 261-265 (2007).
  • [12] C. Wang, Y. G. Zhang, Fault Correspondence Analysis in Complex Electric Power Systems, Advances in Electrical and Computer Engineering 15, 1, 11-16 (2015).
  • [13] Y. G. Zhang, Z. P. Wang, A Novel Approach to Fault Detection in Complex Electric Power Systems, Advances in Electrical and Computer Engineering 14, 3, 27-32 (2014).
  • [14] K. Pietrucha-Urbanik, Failure analysis and assessment on the exemplary water supply network, Engineering Failure Analysis 57, 137-142 (2015).
  • [15] H. Saavedra, J. R. Riba, L. Romeral, Detection of Inter-turn Faults in Five-Phase Permanent Magnet Synchronous Motors, Advances in Electrical and Computer Engineering 14, 4, 49-54 (2014).
  • [16] D. Y. Ning, Y. Gong, Shocking fault component of abnormal sound signal in the fault engine extract method based on linear superposition method and cross-correlation analysis, Advances in Mechanical Engineering 7, 8, (2015).
  • [17] M. Irfan, N. Saad, R. Ibrahim, V. S. Asirvadam, An online condition monitoring system for induction motors via instantaneous power analysis, Journal of Mechanical Science and Technology 29, 4, 1483-1492 (2015).
  • [18] G. M. Krolczyk, J. B. Krolczyk, S. Legutko, A. Hunjet, Effect of the disc processing technology on the vibration level of the chipper during operations, Tehnicki Vjesnik-Technical Gazette 21, 2, 447-450 (2014).
  • [19] P. Hreha, A. Radvanska, L. Knapcikova, G.M. Krolczyk, S. Legutko, J.B .Krolczyk, S. Hloch ,P. Monka, Roughness Parameters Calculation By Means Of On-Line Vibration Monitoring Emerging From AWJ Interaction With Material, Metrology and Measurement Systems 22, 2, 315-326 (2015).
  • [20] A. Glowacz, W. Glowacz, Simulation language for analysis of discrete-continuous electrical systems (SESL2), 26th IASTED International Conference on Modelling, Identification and Control Location: Innsbruck, Austria, 94-99 (2007).
  • [21] M. Duspara, K. Sabo, A. Stoic, Acoustic emission as tool wear monitoring, Tehnicki Vjesnik-Technical Gazette 21, 5, 1097-1101 (2014).
  • [22] K. Stepien, Research on a surface texture analysis by digital signal processing methods, Tehnicki Vjesnik-Technical Gazette 21, 3, 485-493 (2014).
  • [23] K. Stepien, W. Makiela, A. Stoic, I. Samardzic, Defining the criteria to select the wavelet type for the assessment of surface quality, Tehnicki Vjesnik-Technical Gazette 22, 3, 781-784 (2015).
  • [24] W. Glowacz, Z. Glowacz, Diagnostics of separately excited DC motor based on analysis and recognition of signals using FFT and Bayes classifier, Archives of Electrical Engineering 64, 1, 29-35 (2015).
  • [25] A. Glowacz, W. Glowacz, Sound recognition of dc machine with-application of FFT and backpropagation neural network, Przeglad Elektrotechniczny 84, 9, 159-162 (2008).
  • 26] C. da Costa, M. Kashiwagi, M.H. Mathias, Rotor Failure Diagnosis of Induction Motors by Wavelet Transform and Fourier Transform in Function of the Load, International Conference on Computer Science and Artificial Intelligence (ICCSAI 2014), 109-113 (2015).
  • [27] M. Kundegorski, P. J. B. Jackson, B. Ziolko, Two-Microphone Dereverberation for Automatic Speech Recognition of Polish, Archives of Acoustics 39, 3, 411-420 (2014).
  • [28] Z. Kulka, Advances in Digitization of Microphones and Loudspeakers, Archives of Acoustics 36, 2, 419-436 (2011).
  • [29] J. Roj, A. Cichy, Method of Measurement of Capacitance and Dielectric Loss Factor Using Artificial Neural Networks, Measurement Science Review 15, 3, 127-131 (2015).
  • [30] D. Valis, K. Pietrucha-Urbanik, Utilization of diffusion processes and fuzzy logic for vulnerability assessment, Eksploatacja i Niezawodnosc-Maintenance and Reliability 16, 1, 48-55 (2014).
  • [31] D. Valis, L. Zak, O. Pokora, P. Lansky, Perspective analysis outcomes of selected tribodiagnostic data used as input for condition based maintenance, Reliability Engineering & System Safety 145, 231-242 (2016).
  • [32] P. Augustyniak, M. Smolen, Z. Mikrut, E. Kantoch, Seamless Tracing of Human Behavior Using Complementary Wearable and House-Embedded Sensors, Sensors 14, 5, 7831-7856 (2014).
  • [33] M. Izadbakhsh, A. Rezvani, M. Gandomkar, Dynamic response improvement of hybrid system by implementing ANN-GA for fast variation of photovoltaic irradiation and FLC for wind turbine, Archives of Electrical Engineering 64, 2, 291-314 (2015).
  • [34] S. Jun, O. Kochan, Investigations of Thermocouple Drift Irregularity Impact on Error of their Inhomogeneity Correction, Measurement Science Review 14, 1, 29-34 (2014).
  • [35] M. Marzec, R. Koprowski, Z.Wrobel, Methods of face localization in thermograms, Biocybernetics and Biomedical Engineering 35, 2, 138-146 (2015).
  • [36] T. Hachaj, Pattern Classification Methods for Analysis and Visualization of Brain Perfusion CT Maps, Computational Intelligence Paradigms in Advanced Pattern Classification, Book Series: Studies in Computational Intelligence 386, 145-170 (2012).
  • [37] J. Jaworek-Korjakowska, R. Tadeusiewicz, Determination of border irregularity in dermoscopic color images of pigmented skin lesions, Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 6459-6462 (2014).
  • [38] L. Brocki, K. Marasek, Deep Belief Neural Networks and Bidirectional Long-Short Term Memory Hybrid for Speech Recognition, Archives of Acoustics 40, 2, 191-195 (2015).
  • [39] J. B. Krolczyk, An attempt to predict quality changes in a tencomponent granular system, Tehnicki Vjesnik-Technical Gazette 21, 2, 255-261 (2014).
  • [40] E. Nawarecki, S. Kluska-Nawarecka, K. Regulski, Multi-aspect Character of the Man-Computer Relationship in a Diagnostic- Advisory System, Human-computer systems interaction: Backgrounds and applications 2. Pt 1, Book Series: Advances in Intelligent and Soft Computing 98, 85-102 (2012).
  • [41] K. Regulski, D. Szeliga, J. Kusiak, Data exploration approach versus sensitivity analysis for optimization of metal forming processes, Material Forming Esaform 2014, Book Series: Key Engineering Materials 611-612, 1390-1395 (2014).
  • [42] Y. B. Li, M. Q. Xu, Y. Wei, W.H. Huang, Bearing fault diagnosis based on adaptive mutiscale fuzzy entropy and support vector machine, Journal of Vibroengineering 17, 3, 1188-1202 (2015).
  • [43] X. Q. Wang, Y. F. Li, T. Rui, H. J. Zhu, J. C. Fei, Bearing fault diagnosis method based on Hilbert envelope spectrum and deep belief network, Journal of Vibroengineering 17, 3, 1295-1308 (2015).
  • [44] L. Saidi, J. Ben Ali, F. Friaiech, Application of higher order spectral features and support vector machines for bearing faults classification, ISA Transactions 54, 193-206 (2015).
  • [45] R. Tadeusiewicz, Place and Role of Intelligent Systems in Computer Science, Computer Methods in Materials Science 10, 4, 193-206 (2010).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1700cf04-a7bf-48dc-b5b9-01271efe91d5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.