PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Lead species formation on pure hemimorphite surface and its performance for subsequent sulfidization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hemimorphite is important-supplementary resource for the commercial zinc production, but it easy loses into tailings due to extreme difficulty for its surface sulfidization. Adding active metal ions after sulfidization have been widely proposed for enhancing hemimorphite floatability, but its desired efficiency in flotation practice has not yet been completely achieved caused by the instability of sulfide layer. Whereas pre-adsorption of active metal ions to modify the hemimorphite surface has strong potential to make up for this shortcoming. Herein, the feasibility and appropriate environment of free Pb2+ for modifying the pure hemimorphite surface was evaluated. Subsequently, the performance of Pb2+ adsorption for enhancing sulfidization stability and floatability of hemimorphite were investigated. The X-ray photoelectron spectroscopy results indicated that the Pb2+ adsorption on hemimorphite surface was achieved through the Pb ions displacement for Zn ions, and it was bond to oxygen-containing groups on hemimorphite surface. Such adsorption was strengthened with the increasing of solution pH, owing to the abundant Pb hydroxyl species precipitated on mineral under alkaline conditions, in term of the results of visual MINTEQ modeling and time-of-flight secondary-ion mass spectrometry. In addition, the X-ray photoelectron spectroscopy results showed dominant Pb hydroxyl species further reacted with sulfur during subsequent sulfidization to generate much more S species than that of without Pb2+ pre-modification. Meanwhile, such sulfide layer composed by Pb2+ on the mineral surface presented much higher stability than Zn-S species, which was verified via adsorption and desorption tests. As a result, the sulfidization and flotation recovery of hemimorphite increased after Pb2+ pre-adsorption.
Rocznik
Strony
art. no. 187064
Opis fizyczny
Bibliogr. 36 poz., tab., wykr.
Twórcy
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
Bibliografia
  • ASAHI, T., MIURA, Y., NANBA, T., YAMASHITA, H., 1999. Chemical Bonding State of Sulfur in Oxysulfide Glasses. The Korean Journal of Ceramics, 5, 178-182.
  • BAI, S., YU, P., DING, Z., BI, Y., WEN, S., 2020. New insights into lead ions activation for microfine particle ilmenite flotation in sulfuric acid system: Visual MINTEQ models, XPS, and ToF–SIMS studies. Minerals Engineering, 155, 106473.
  • BERTRAND, P., A., FLEISCHAUER, P., 1980. X-ray photoelectron spectroscopy study of the surface adsorption of lead naphthenate. J. Vacuum Sci. Technol., 17, 1309-1314.
  • BONI, M., SCHMIDT, P.R., DE WET, J.R., SINGLETON, J.D., BALASSONE, G., MONDILLO, N., 2009. Mineralogical signature of nonsulfide zinc ores at Accha (Peru): A key for recovery. International Journal of Mineral Processing, 93, 267-277.
  • BRION, D., 2002. Etude par spectroscopie de photoelectrons de la degradation superficielle de FeS2, CuFeS2, ZnS et PbS a l'air et dans l'eau. Appl. Surf. Sci., 5, 133-152.
  • DASH, B., JENA, S.K., RATH, S.S., 2022. Adsorption of Cr (III) and Cr (VI) ions on muscovite mica: Experimental and molecular modeling studies. Journal of Molecular Liquids, 357, 119116.
  • EJTEMAEI, M., GHARABAGHI, M., IRANNAJAD, M., 2014. A review of zinc oxide mineral beneficiation using flotation method. Advances in Colloid and Interface Science, 206, 68-78.
  • FANG, S., XU, L., WU, H., TIAN, J., LU, Z., SUN, W., HU, Y., 2018. Adsorption of Pb(II)/benzohydroxamic acid collector complexes for ilmenite flotation. Minerals Engineering, 126, 16-23.
  • FENG, Q., WEN, S., 2017. Formation of zinc sulfide species on smithsonite surfaces and its response to flotation performance. Journal of Alloys and Compounds, 709, 602-608.
  • FRENAY, J., 1985. Leaching of oxidized zinc ores in various media. Hydrometallurgy 15, 243-253.
  • HERRON, S.M., LAWAL, Q.O., BENT, S.F., 2015. Polysulfide ligand exchange on zinc sulfide nanocrystal surfaces for improved film formation. Applied Surface Science, 359, 106-113.
  • JIA, K., FENG, Q., ZHANG, G., JI, W., ZHANG, W., YANG, B., 2018. The role of S(II) and Pb(II) in xanthate flotation of smithsonite: Surface properties and mechanism. Applied Surface Science, 442, 92-100.
  • JIA, K., FENG, Q., ZHANG, G., SHI, Q., CHANG, Z., 2017. Understanding the roles of Na2S and Pb(II)in the flotation of hemimorphite. Minerals Engineering, 111, 167-173.
  • KIM, K., O'LEARY, T., WINOGRAD, N., 1973. X-ray photoelectron spectra of lead oxides. Anal. Chem., 45(13), 2214-2218.
  • LI, C., BAI, S., DING, Z., YU, P., WEN, S., 2018. Visual MINTEQ model, ToF–SIMS, and XPS study of smithsonite surface sulfidation behavior: Zinc sulfide precipitation adsorption. Journal of the Taiwan Institute of Chemical Engineers, 96, 53-62.
  • LIU, C., FENG, Q., ZHANG, G., MA, W., MENG, Q., CHEN, Y., 2016. Effects of lead ions on the flotation of hemimorphite using sodium oleate. Minerals Engineering, 89, 163-167.
  • LIU, C., ZHANG, W., SONG, S., LI, H., 2019. A novel method to improve carboxymethyl cellulose performance in the flotation of talc. Minerals Engineering, 131, 23-27.
  • LIU, J., EJTEMAEI, M., NGUYEN, A.V., WEN, S., ZENG, Y., 2020. Surface chemistry of Pb-activated sphalerite. Minerals Engineering, 145, 106058.
  • LIU, Z., LIU, Z., LI, Q., YANG, T., ZHANG, X., 2012. Leaching of hemimorphite in NH3–(NH4)2SO4–H2O system and its mechanism. Hydrometallurgy, 125-126, 137-143.
  • MCPHAIL, D.C., SUMMERHAYES, E., JAYARATNE, V., CHRISTY, A., 2006. Hemimorphite solubility and stability of low-T zinc minerals. Geochimica et Cosmochimica Acta, 70, A414.
  • NAVIDI KASHANI, A.H., RASHCHI, F., 2008. Separation of oxidized zinc minerals from tailings: Influence of flotation reagents. Minerals Engineering, 21, 967-972.
  • ÖNAL, G., BULUT, G., GÜL, A., KANGAL, O., PEREK, K.T., ARSLAN, F., 2005. Flotation of Aladagˇ oxide lead–zinc ores. Minerals Engineering, 18, 279-282.
  • REICHERT, J., BORG, G., 2008. Numerical simulation and a geochemical model of supergene carbonate-hosted non-sulphide zinc deposits. Ore Geology Reviews, 33, 134-151.
  • SALUM, M.J.G., DE ARAUJO, A.C., PERES, A.E.C., 1992. The role of sodium sulphide in amine flotation of silicate zinc minerals. Minerals Engineering, 5, 411-419.
  • SHIEL, A.E., WEIS, D., ORIANS, K.J., 2010. Evaluation of zinc, cadmium and lead isotope fractionation during smelting and refining. Science of The Total Environment, 408, 2357-2368.
  • SMART, R.S.C., SKINNER, W.M., GERSON, A.R., 1999. XPS of sulphide mineral surfaces: metal-deficient, polysulphides, defects and elemental sulphur. Surface and Interface Analysis, 28(1), 101-105.
  • WANG, H., WEN, S., HAN, G., XU, L., FENG, Q., 2020. Activation mechanism of lead ions in the flotation of sphalerite depressed with zinc sulfate. Minerals Engineering, 146, 106132.
  • XIE, H., LIU, Y., RAO, B., WU, J., GAO, L., CHEN, L., TIAN, X., 2021. Selective passivation behavior of galena surface by sulfuric acid and a novel flotation separation method for copper-lead sulfide ore without collector and inhibitor. Separation and Purification Technology, 267, 118621.
  • XING, D., HUANG, Y., LIN, C., ZUO, W., DENG, R., 2021. Strengthening of sulfidization flotation of hemimorphite via fluorine ion modification. Separation and Purification Technology, 269, 118769.
  • YANG, Z., TENG, Q., HAN, Y., 2023. Coordination reaction triggered xanthan gum and Fe(III) self-assembly and adsorption on hematite surface for quartz-hematite flotation separation. Journal of Molecular Liquids, 390, 123126.
  • YI, Y., LI, P., ZHANG, G., FENG, Q., HAN, G., 2022. Stepwise activation of hemimorphite surfaces with lead ions and its contribution to sulfidization flotation. Separation and Purification Technology, 299, 121679.
  • ZHANG, Y., JIANG, H., WANG, Q., MENG, C., 2018. In-situ hydrothermal growth of Zn4Si2O7(OH)2•H2O anchored on 3D N, S-enriched carbon derived from plant biomass for flexible solid-state asymmetrical supercapacitors. Chem. Eng. J., 352, 519-529.
  • ZHANG, S., WEN, S., LIANG, G., XIAN, Y., CHEN, L., 2022. Ammonia pretreatment for enhancement of Pb ions adsorption on smithsonite surface and its flotation performance. Applied Surface Science, 590, 153069.
  • ZHANG, S., WEN, S., XIAN, Y., LIANG, G., LI, M., 2021. Pb ion Pre-Modification enhances the sulfidization and floatability of smithsonite. Minerals Engineering, 170, 107003.
  • ZHANG, S., WEN, S., XIAN, Y., ZHAO, L., FENG, Q., BAI, S., HAN, G., LANG, J., 2019a. Lead ion modification and its enhancement for xanthate adsorption on smithsonite surface. Applied Surface Science 498, 143801.
  • ZHAO, W., LIU, D., FENG, Q., 2020. Enhancement of salicylhydroxamic acid adsorption by Pb(II) modified hemimorphite surfaces and its effect on floatability. Minerals Engineering, 152, 106373.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16ff8475-304a-444f-8b2b-51c2560fffca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.