
Studia Geotechnica et Mechanica, 2020; 42(4): 319–329

Research Article Open Access

Studia Geotechnica et Mechanica, 2020; 1–11

Research Article Open Access

Czesław Machelski*

The Use Of The Collocation Algorithm For 
Estimating The Deformations Of Soil-Shell Objects 
Made Of Corrugated Sheets
https://doi.org/10.2478/sgem-2019-0048
received February 3, 2020; accepted May 4, 2020.

Abstract: The algorithm presented in this paper is 
intended for the analysis of deformations of shells in 
the construction phase of soil-shell objects when strain 
gauges and geodetic measurements are used. During the 
construction of such an object, large displacement values 
occur and the impact of axial forces on the displacement 
of a corrugated metal sheet is small. Internal forces 
(strain gauges), as well as the displacements of a selected 
circumferential band of the shell are determined directly 
from such observations.

The paper presents two examples of the analysis 
of large span shell structures of constructed objects, 
as well as the assessment of the effectiveness of the 
finite difference method (FDM) in beam schemes. Good 
deformation mapping was indicated using the collocation 
algorithm and the differential approach to the solution 
when there is a dense mesh and regular distribution of 
measuring points. In the analysed examples, a significant 
divergence between the support conditions adopted in the 
FEM calculation models and the actual static conditions 
in the objects was indicated. The collocation algorithm is 
especially designed for such situations. Collocation points 
in such a solution are used to consider a beam – separated 
from a structure and without boundary constraints, but 
with specific changes in curvature – as a reference system, 
which is determined from the geodetic measurements of 
two collocation points. 

Keywords: Monitoring; soil-steel objects; corrugated 
sheets; collocation.

1  Introduction
Soil-shell objects made of corrugated metal sheets are 
characterized, among others, by the fact that bearings are 
not used in them.[21] Therefore, the support conditions of 
the shells are inherently unidentified, which means that 
the freedom of rotation is not fully preserved (hence, 
the moments), but at the same time, displacements 
are still possible. In practice, a design (calculation) 
scheme is strived to be met, that is, the obtaining of an 
articulated and non-sliding support in the building under 
construction. The paper considers the construction phase 
of the soil-steel structure, which is when the largest 
internal forces and displacements are created in the shell. 
However, the geometric diversity of this type of structure 
often requires an individual approach to the discussed 
problem.[25] Additionally, the soil-structure interaction of 
a buried structure is affected by: the material, size and 
stiffness; by the construction method; by the type and 
placement of the backfill material; and by the external 
loading.[3,5,6,15] Time-dependent analysis is described in 
[14]. Many works concern the problem of adjusting the 
soil-steel interaction.[1,25]

During the construction phase of a soil-shell structure, 
deformation of the shell is a random phenomenon. Soil 
impact resulting from different levels of ground[17,19,20,22] 
on both sides of the shell, and also the compaction of 
backfill, are usually not symmetrical.[23] Therefore, the 
function of the interaction of soil on the shell can be 
varied. Using the measuring base that is located on the 
shell gives the opportunity to observe the internal forces 
and displacements of the corrugated metal sheet of an 
object,[9,13] as well as the interaction between the backfill 
and the shell.[10,11]

To monitor shell structures with the largest spans, 
strain gauges and surveying techniques are used 
simultaneously.[13] In the case of measuring geodetic 
displacements, internal forces are determined as an 
additional result. In turn, internal forces, and hence 
additional displacements, are determined on the basis 
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of measuring unit deformations.[9,11]. The paper shows the 
use of both measurement techniques in order to validate 
the collocation algorithm.[11,12] The solution uses the finite 
difference method (FDM)[4,7,16,18] when applied to beam 
systems. Therefore, an approximate solution is obtained 
from the FDM results, and thus, the differential coefficient 
η, which indicates a deviation from the exact FEM result, 
is used in the paper. The use of the collocation method[2,11] 
with differential correction allows shell deformations 
in soil-shell structures, as well as in other construction 
models such as beam systems, to be correctly mapped.

 The main advantage of the collocation algorithm 
and the differential solution is the ability to analyse a 
selected fragment of an object’s structure, for example, 
one beam, without taking into account the boundary 
conditions in its contact with the rest of the structure. The 
loads of such a bar may not be precisely defined – they are 
coded in the bending moment diagram (in the change of 
the curvature), as is the case in the examples presented in 
the paper.

2  Efficiency of the differential beam 
solution
The paper uses the relation of bending moments in point 
i that are calculated on the basis of the deflection line in 
the vicinity of this point using a differential approach[4,16] 
with the form of:
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Bending moments in section 0 < x < b change according to the following dependence: 
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while in the central part of the beam, there is a constant value of: 
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The bending moments that are specified in Formulas (8) and (9), according to Equation (1), are 

associated with deflections according to the following relation: 
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and the deformation in the cross-sectional axis of the circumferential beam: 

[ ]Dg tftf
f

εεε )()(
2
1

−++=  .   (15) 

. (2)

Equation (2) is an exact approach to the relationship of 
moments and the deflection in a beam.

An approximate solution is obtained from Formula (1). 
Table 1 summarizes the results that were obtained from 
the calculation of three types of loads applied to a scheme 
of a simply supported beam. When it is assumed in the 
scheme that the beam is divided into two parts, c = L/2 is 
obtained. The end points are the supports with numbers 0 

and 4, and therefore, w0 = w4 = 0. With such assumptions, 
a bending moment in middle point 2 is obtained from the 
following dependence
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In Formula (3), M2 is an exact value obtained from Formula 
(2), while moment M(FDM) is calculated from (1). From 
the proportions of these results, as in (3), the differential 
coefficients η are determined and given in Table 1. 

Table 1 presents the results of calculations when there 
are four sections of mesh in the beam (as in the scheme), 
which is subjected to the previously analysed loads. In the 
case of calculations for middle point 2, as in (3), symmetry 
is assumed, and hence, w1 = w3 and the following equation:
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When the bending moment in the intermediate point 1 is 
analysed, the following formula is used:
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This is due to the fact that w0 = 0. The values of the 
differential coefficients given in the table show that they 
depend on the load case, and therefore, on the shape of 
the bending moment diagram and the density of the beam 
division mesh into sections c.

Figure 1 shows an example of a simply supported 
beam loaded with intermittent distributed force q along 
length b. The division of the beam into sections with 
lengths L = 6b = 18c was assumed in the calculations. With 
these assumptions, the following deflection functions are 
obtained:
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In this example, according to the results in Table 1, there is 
a constant value of η = 1 in the middle of the beam. In the 
end section 0 < x < b, the differential coefficients assume 
small values of η1 = 1.0154; η2 = 1.0084 ... η6 = 1.0023. 
Therefore, the values of coefficients indicate a technically 
correct estimation of bending moments in the entire area 
of the analysed beam (without taking into account η).

3  Differential solution of the arch
Figure 2a shows a scheme of an arch with a shape of a 
half circle that has radius R. The bending stiffness of 
arch EI, and the compressive stiffness EA, are constant 
along its length. The symmetrical load of the distributed 
force p(s) with a radial direction also causes symmetrical 
deformation of the shell, which is determined by the 
function r(s). In the arch, it is determined by the maximum 
displacements: vertical rk – the uplift of the crown, and 
horizontal ro – the narrowing of a side wall. Figure 2b 
shows a symmetrical, in relation to the crown, distribution 

Table 1: List of the analysed static quantities.

Beam 
division

Analysed 
quantity

Type of load

Scheme

two 
sections
c = L/2

w2

M2 M

M2(FEM) M

η2 1 6/5 3/2

four 
sections
c = L/4

w1

M1 M

M2(FEM) M

M1(FEM) M

η2 1 24/23 6/5

η1 1 18/17 1

Figure 1: Static scheme of an analysed beam system.
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of internal forces along the length of the arch. In general, 
the effect on arch p(s) is associated with the distribution 
of axial force N(s) and the distribution of bending moment 
M(s) along the arch according to the following equation:
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In the analysed case of the arch, displacements depend on 
the internal forces included in the Mohr equation, which 
has the form of:
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In this formula, M(s) and N(s) are the internal forces 
resulting from the load p(s), while Mr(s) and Nr(s) are 
tracking functions of displacements with a radial direction 
r. The paper uses the assumption of a negligible influence 
of axial forces. This is justified in the case of considering 
the loads located in the lower part of the arch, as in Figure 
2a.

The integral approach[9] is replaced in the paper by a 
differential relation, as in (10), in the form:
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and the deformation in the cross-sectional axis of the circumferential beam: 
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In this case, c is the length of the arch – a segment of a 
circle with a radius R formed between the points of the 
regular mesh of the division into elements. In the analysed 
example, load p is a radial hydrostatic interaction.

Figure 3 presents diagrams of the analysed quantities 
that were obtained from the FEM solution. The following 

numbering of points was adopted: 0 – a support, and 
15 – a crown, and therefore, a quarter of the circle 
was divided into 15 segments. From the comparison of 
bending moments M(s) and MMRS(s), and with the use of 
displacements r(s), as in Equation (13), the function η(s) 
that is shown in Figure 4 is obtained. Therefore, in order 
to obtain the correct bending moments (FEM) from the 
differential Equation (13), it is necessary to correct the 
displacements with the value of differential coefficients.

FEM results in the form of bending moments and 
displacements – treated as exact values – were used in the 
previously presented calculation examples. On this basis, 
the differential coefficients η were determined for various 
construction and load schemes. The results from the 
examination of objects, the bending moments obtained 
from strain gauges, and the displacements obtained from 
geodetic readings are used in the case of the analyses 
considered in the paper.

4  A collocation algorithm used for 
a shell made of a corrugated metal 
sheet 
The testing of soil-shell objects made of corrugated 
sheets, as in Figure 5a, involves the use of strain gauges 
in the points of the scheme given in Figure 5b. From these 
measurements, the curvature change is obtained while 
using the principle of plane cross-sections:
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Figure 2: Diagram of the impact of filling, and also the deformation of the circumferential layers of the shell.
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and the deformation in the cross-sectional axis of the 
circumferential beam:
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These quantities appear in Mohr Equation (12), which is 
used to calculate displacements r.[10,24] In the paper, however, 
they are used to calculate the function of displacements r 
from relationship (13), as in the given formula:
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Calculations of the displacements start from the 
collocation point and the assumption of the displacement 
ri of that point. Based on the initially adopted value ri+1 
(adjacent point), the displacement in the adjacent point 
(i-1) is also obtained from:
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Because the initially adopted value ri+1 is arbitrary, the 
appropriate displacement in the second collocation point 
is not obtained. In order to achieve the compatibility of 
results in this point, angular transformation is necessary. 
This transformation is also used to determine the 

Figure 3: The diagrams of the bending moments and displacements calculated using the FEM model.

Figure 4: Distribution of differential coefficients along the length of the arch.
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differential coefficient η in Formula (17). Therefore, the 
displacements at the collocation points obtained from 
Formula (17) are accurate, and at the remaining points of 
the mesh, they can be considered as close to the correct 
values. If these results are similar, it can be seen that both 
displacement functions – from the geodetic measurements 
(including collocation ones), and that obtained from (17) 
– are adjusted.

The difference between integral algorithm (12) 
and differential algorithm (17) is basic. In (12), there 
are displacement tracking functions Mr(s) and Nr(s), in 
which the considered static scheme is treated as a design 
assumption. The construction of the support of the 
built shells shows that it is not an articulated and non-
sliding connection, which is visible in the examples of 
measurement results carried out on objects. However, 
in Formula (17), there are no boundary conditions for 
the beam. They are replaced by displacements at two 
collocation points, as in Figure 6. Their position (any) 
is determined on the basis of, for example, geodetic 
measurements. It is important that these points are 
characteristic for the deformation of the beam, for 
example, the displacement of the crown and the sidewall 
of the soil-shell structure, as in Figure 6.

The algorithm given in the paper is intended for 
the analysis of the deformation of a shell during the 

construction phase of a soil-shell object when using strain 
gauges and geodetic measurements. In such a case, there 
are large displacement values, and the influence of axial 
forces on the strain is small. Such measurements are 
performed when monitoring a facility during the laying of 
a backfill, and also during the tracking of changes in the 
initial phase of the exploitation.[13]

5  The shell of a large object in 
Ostroda
The analysed example of the object in Ostroda[9] is 
the largest structure in Poland. It has the geometric 
characteristics of a shell with the shape of circle fragments, 
and a radius of curvature R = 16.632 m (and corner Rn = 6.12 
m), span L = 25,724 m, and shell height H = 9.11 m. The 
geometry of the corrugated metal sheet is expressed by 
its technical designation UC 500×237×9.65. It is the Ultra 
Cor type and has parameters: a = 500 mm – wave length, 
f = 237 mm – wave height, t = 9.65 mm – sheet thickness. 
During the construction and monitoring of the object, 
strain gauge measurements were taken in the points given 
in Figure 6, and geodetic measurements in the points that 
are distant by 2c.

The results of the analyses given in the paper relate 
to the construction phase, that is, laying of the backfill, 
where zg determines its thickness, as in Figure 5a. Figure 
7 shows a comparison of the radial displacement results 
obtained from geodetic measurements r(uw) and those 
calculated using Formula (17) – as r(FDM), where zg = 
H = 9.2 m. They refer to the bending moments diagram, 
which is associated with the change of curvature, as in 
Formula (14), when EI = 9.92 MNm2 and the bands have a 
width of a = 0.5 m. After the angular transformation used 
in Equation (17) for the selected backfill thicknesses zg [m] 

b) 

Fig. 5. Geometry of the circumferential band of the shell: a) deformation of the shell, b) distribution of the 
deformations in the cross-section of the shell that is evaluated 

a) 

Figure 5: Geometry of the circumferential band of the shell: a) deformation of the shell, b) distribution of the deformations in the cross-
section of the shell that is evaluated.

Figure 6: Scheme of the circumferential band of the shell with the 
collocation points.
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(given in brackets), the following differential coefficients 
were obtained:

η(6.3) = 4/7 ;      η(7.5) = 4/7 ;       η(9.2) = 5/9 ;      η(10.4) = 
20/41 .

These values (mean values according to Figure 6) take 
into account the change in soil interaction on the shell at 
various backfill levels (when zg = H, the backfill reaches 
the level of the shell’s crown). Therefore, the bending 
moments diagram, as well as the form of displacements, 
change, as in Figure 7. The η values are also influenced by 
the component r(N) from Equation (12).

6  The shell of the Shumal Bridge
The analysed example of the Shumal Bridge object 
in Dubai, or more precisely in Ras Al Khajmah in the 
United Arab Emirates,[23] is the largest in the world. The 
geometrical characteristics of the shell are as follows: 
span L = 32.39 m, shell height H = 9.57 m, and radius of 
curvature R = 29.68 m (and corner Rn = 8.19 m). The type 

of corrugated metal sheet is defined by its dimensions 
as UC 500×237×12 [mm], which are marked in Figure 5b 
(and in the paper) as UC a×f×t. During the construction 
and monitoring of the object, strain gauge measurements, 
as well as geodetic measurements were carried out in 
the points given in Figure 6. The results of the analyses 
presented in the paper relate to the construction phase, 
where zg determines the thickness, as in Figure 5.

Figure 8 presents the diagrams of the radial 
displacements that were obtained from geodetic 
measurements for the characteristic five levels of the 
backfill, which were designated as A, B, ... E. In the facility, 
various backfill thicknesses on both sides were used, and 
their values are given in Table 2 – due to the twin system 
of the shell in the object. For this reason, there was a lack 
of symmetry in the deformation of the circumferential 
band of the shell, which was not observed in the object 
in Ostroda.

Figure 9 shows a comparison of the radial displacement 
results obtained from the geodetic measurements r(uw) 
and from calculations using Formula (17), as r(FDM). 
They refer to the diagrams of the bending moments that 
are related to the curvature change, as in Formula (14), 

Figure 7: Bending moments and radial displacements in the circumferential band of the shell when zg = H.
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when EI = 11.4 MNm2, and the width of the band a = 0.5 
m. Table 2 summarizes the values calculated from the 
comparison of curvature changes in the shell’s crown. 
The displacement of the diagrams given in Figure 9 may 
be due to the horizontal displacements of the shell, which 
are a result of the lack of symmetry in soil interactions on 
the left and right of the shell.

7  The deformation of the shell 
during the strengthening of the 
stone tunnel
The design scheme of the shell of the reinforced stone 
tunnel in Jedlina is given in Figure 2. The shell has a shape 
of a half circle with R = H = L/2 = 3.5 m. The profile of the 
corrugated metal sheet is of MP type with 200×55×5.5 [ mm] 
– where MP a×f×t (wave length, high, sheet thickness). 
Figure 2 presents the static scheme and results obtained 
from solving the arc using FEM.

In the study of the analysed object, changes in the 
shape of the shell during its strengthening were measured 

using terrestrial laser scanning[17] and the Riegl VZ-400i 
device. The result of geodetic measurements were the radial 
displacement fields of the shell, which were processed into 
transverse profiles. Figure 10 shows one of the deflection 
profiles along the circumferential band of the shell. The 
parameter that determines the position of the analysed 
point on the arc is coordinate s, which is calculated along 
the circumference of the circle from the shell’s crown (s = 
0). Positive values indicate the displacement of the shell 
into the object. In the displacement line, in the vicinity of 
the crown, the impact (weight) of the concrete mix being 
implemented from this area is visible.

The diagrams of the deflection and bending moments 
of the shell that are shown in Figure 10 significantly differ 
from the results obtained from the calculations of the 
object model when using FEM, as shown in Figure 3. For the 
calculation of the bending moments, as shown in Figure 
10, radial displacements r(s) and differential analysis, as 
given in Formula (1), were adopted. The constant bending 
stiffness EI = 103 kNm2 of the circumferential band with a 
sheet width of a = 0.2 m was used. Therefore, in the object, 
the shell’s support is not an articulated and non-sliding 
node. These reasons are the cause for the significant 

Figure 8: Functions of the deformations of the circumferential band of the shell.

Table 2: Comparison of the results of geodetic and strain gauge measurements.

Construction phase A B C D E F

κ(r)∙10-3 [1/m] 0.985 5.745 5.302 3.699 2.248 1.936

κ(ε) 10-3 [1/m] 0.886 5.363 5.038 4.276 2.484 2.614

η 0.899 0.933 0.950 1.156 1.105 1.350

w [mm] 34.7 92.3 28.8 -46.8 -89.4 -116.3

zg [m] 7.54/7.25 9.78/9.99 10.44/11.04 10.48/11.32 11.07/11.92 11.73/12.32
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discrepancies between the calculation results, obtained 
from FEM, and the values of measured displacements, 
such as the shell’s deformations.

Figure 11 presents the results of the analysis of the 
impact of the mesh density of the FDM elements when 
adopting the algorithm given in Formula (17). Two 
collocation points were used in the calculations: one in 
the crown (s = 0), and the other when s = -3.5 m. In this 
case, the curvature change was assumed based on the 
bending moments from Figure 10 and the relationship κ = 
M/EI. Due to the fact that the moments were determined 
on the basis of displacements r from Figure 10, full 
compliance of the diagrams is obtained with a dense mesh 
of the division into sections. Therefore, the differences of 
the diagrams that are visible in Figure 11 are only caused 
by the influence of the mesh and parameter c that are 
given in the key of the diagram. The direct cause of the 
differences is the complex function of the curvature 
change. Therefore, when κ(s) is a function with a complex 
waveform, it is necessary to use a dense measuring mesh. 
The case discussed in this point is a classic example where 
a collocation solution and FDM can be used.

8  Summary
In order to measure the internal forces in a shell’s 
corrugated metal sheet, strain gauge measuring techniques 
are usually used. Due to significant displacements of the 
flaccid shell, geodetic measurements are also used. The 
displacement estimation algorithm that is discussed in the 
paper is based on the use of strain gauge (or fibre optic) 
measurements. It is intended for bar systems in which the 
design support conditions are not met. Collocation points 
in such a solution are used to consider the bar without 
constraints, but with specific changes in curvature, as the 
reference system. For this purpose, the transformation 
from the computational to the measuring system, that is, 
collocation points, is used. A small participation of axial 
forces in the displacements is beneficial for the algorithm.

Three examples of analysing the corrugated sheet 
shell are given in the paper. Good mapping of the 
deformation with the use of the collocation algorithm was 
indicated. In the case of a dense mesh and with a regular 
distribution of measuring points, it is convenient to use 
a differential approach. The analysed examples show a 
significant discrepancy between the support conditions 

Figure 9: Radial displacements in the circumferential band of the shell during construction phase B.
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when EI = 11.4 MNm2, and the width of the band a = 0.5 
m. Table 2 summarizes the values calculated from the 
comparison of curvature changes in the shell’s crown. 
The displacement of the diagrams given in Figure 9 may 
be due to the horizontal displacements of the shell, which 
are a result of the lack of symmetry in soil interactions on 
the left and right of the shell.

7  The deformation of the shell 
during the strengthening of the 
stone tunnel
The design scheme of the shell of the reinforced stone 
tunnel in Jedlina is given in Figure 2. The shell has a shape 
of a half circle with R = H = L/2 = 3.5 m. The profile of the 
corrugated metal sheet is of MP type with 200×55×5.5 [ mm] 
– where MP a×f×t (wave length, high, sheet thickness). 
Figure 2 presents the static scheme and results obtained 
from solving the arc using FEM.

In the study of the analysed object, changes in the 
shape of the shell during its strengthening were measured 

using terrestrial laser scanning[17] and the Riegl VZ-400i 
device. The result of geodetic measurements were the radial 
displacement fields of the shell, which were processed into 
transverse profiles. Figure 10 shows one of the deflection 
profiles along the circumferential band of the shell. The 
parameter that determines the position of the analysed 
point on the arc is coordinate s, which is calculated along 
the circumference of the circle from the shell’s crown (s = 
0). Positive values indicate the displacement of the shell 
into the object. In the displacement line, in the vicinity of 
the crown, the impact (weight) of the concrete mix being 
implemented from this area is visible.

The diagrams of the deflection and bending moments 
of the shell that are shown in Figure 10 significantly differ 
from the results obtained from the calculations of the 
object model when using FEM, as shown in Figure 3. For the 
calculation of the bending moments, as shown in Figure 
10, radial displacements r(s) and differential analysis, as 
given in Formula (1), were adopted. The constant bending 
stiffness EI = 103 kNm2 of the circumferential band with a 
sheet width of a = 0.2 m was used. Therefore, in the object, 
the shell’s support is not an articulated and non-sliding 
node. These reasons are the cause for the significant 

Figure 8: Functions of the deformations of the circumferential band of the shell.

Table 2: Comparison of the results of geodetic and strain gauge measurements.

Construction phase A B C D E F

κ(r)∙10-3 [1/m] 0.985 5.745 5.302 3.699 2.248 1.936

κ(ε) 10-3 [1/m] 0.886 5.363 5.038 4.276 2.484 2.614

η 0.899 0.933 0.950 1.156 1.105 1.350

w [mm] 34.7 92.3 28.8 -46.8 -89.4 -116.3

zg [m] 7.54/7.25 9.78/9.99 10.44/11.04 10.48/11.32 11.07/11.92 11.73/12.32
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discrepancies between the calculation results, obtained 
from FEM, and the values of measured displacements, 
such as the shell’s deformations.

Figure 11 presents the results of the analysis of the 
impact of the mesh density of the FDM elements when 
adopting the algorithm given in Formula (17). Two 
collocation points were used in the calculations: one in 
the crown (s = 0), and the other when s = -3.5 m. In this 
case, the curvature change was assumed based on the 
bending moments from Figure 10 and the relationship κ = 
M/EI. Due to the fact that the moments were determined 
on the basis of displacements r from Figure 10, full 
compliance of the diagrams is obtained with a dense mesh 
of the division into sections. Therefore, the differences of 
the diagrams that are visible in Figure 11 are only caused 
by the influence of the mesh and parameter c that are 
given in the key of the diagram. The direct cause of the 
differences is the complex function of the curvature 
change. Therefore, when κ(s) is a function with a complex 
waveform, it is necessary to use a dense measuring mesh. 
The case discussed in this point is a classic example where 
a collocation solution and FDM can be used.

8  Summary
In order to measure the internal forces in a shell’s 
corrugated metal sheet, strain gauge measuring techniques 
are usually used. Due to significant displacements of the 
flaccid shell, geodetic measurements are also used. The 
displacement estimation algorithm that is discussed in the 
paper is based on the use of strain gauge (or fibre optic) 
measurements. It is intended for bar systems in which the 
design support conditions are not met. Collocation points 
in such a solution are used to consider the bar without 
constraints, but with specific changes in curvature, as the 
reference system. For this purpose, the transformation 
from the computational to the measuring system, that is, 
collocation points, is used. A small participation of axial 
forces in the displacements is beneficial for the algorithm.

Three examples of analysing the corrugated sheet 
shell are given in the paper. Good mapping of the 
deformation with the use of the collocation algorithm was 
indicated. In the case of a dense mesh and with a regular 
distribution of measuring points, it is convenient to use 
a differential approach. The analysed examples show a 
significant discrepancy between the support conditions 

Figure 9: Radial displacements in the circumferential band of the shell during construction phase B.
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Figure 10: Diagram of the displacements and bending moments of the shell in the radial direction.

Figure 11: The diagram of displacements (curvature changes) in the circumferential bands of the shells.
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Figure 10: Diagram of the displacements and bending moments of the shell in the radial direction.

Figure 11: The diagram of displacements (curvature changes) in the circumferential bands of the shells.
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of the FEM calculation model and the actual static 
conditions in the object at the construction site. Such 
analyses are performed when monitoring an object during 
the laying of the backfill and the tracking of changes in 
the initial phase of construction. The deformation of the 
shell during the construction is a random phenomenon. 
Soil impact that results from its different levels on both 
sides of the shell, and also from the backfill compaction, 
is usually not symmetrical. Therefore, the function of soil 
interaction on the shell can be varied.

The presented calculation algorithm can be used in 
other models of structures, which are modelled as a bar 
system. The main advantage of the algorithm is the ability 
to analyse a selected fragment of the structure of the 
object, for example, one bar without taking into account 
the boundary conditions in its contact with the rest of 
the structure. The algorithm is sensitive to measurement 
errors. Therefore, when there are measurement 
inaccuracies, the results will not match – apart from in the 
case of the collocation points, and an unadjusted solution 
is then obtained.
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