PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of geometric parameters of the stomatognathic system using radiological imaging

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In modern clinical practice in various areas of dentistry, there is a need to virtualize and determine the diagnostic parameters of the stomatognathic system (SS). The aim of this article is to provide an evaluation of correct SS structures based on a comparison of mappings in pantomography, lateral cephalometry, and volumetric tomography using bone and tooth anthropometric points. The digital measurements performed determine the applicability of the analyzed imaging techniques for clinical diagnostics by indicating discrepancies and errors in the evaluation of geometric parameters. They should verify the location of characteristic points, lines, angles, and planes in relation to spatial objects mapped on the 1:1 scale. The analyses performed confirm the appearance of bone and dental structure asymmetry in healthy patients.
Słowa kluczowe
Rocznik
Strony
585--600
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
  • Jagiellonian University Medical College, Faculty of Medicine, Dental Institute, Department of Dental Prosthodontics and Orthodontics, 4 Montelupich Street, 31-155 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, 30 Mickiewicza Ave., 30-059 Krakow
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, 30 Mickiewicza Ave., 30-059 Krakow
Bibliografia
  • [1] Al-Saleh, M. A., Alsufyani, N., Lai, H., Lagravere, M., Jaremko, J. L., & Major, P. W. (2017). Usefulness of MRI-CBCT image registration in the evaluation of temporomandibular joint internal derangement by novice examiners. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 123(2), 249-256. https://doi.org/10.1016/j.oooo.2016.10.016
  • [2] Codari, M., Caffini, M., Tartaglia, G. M., Sforza, C., & Baselli, G. (2017). Computer-aided cephalometric landmark annotation for CBCT data. International Journal of Computer Assisted Radiology and Surgery, 12(1), 113-121. https://doi.org/10.1007/s11548-016-1453-9
  • [3] Míguez-Contreras, M., Jiménez-Trujillo, I., Romero-Maroto, M., López-de-Andrés, A., & Lagravère, M. O. (2017). Cephalometric landmark identification consistency between undergraduate dental students and orthodontic residents in 3-dimensional rendered cone-beam computed tomography images: A preliminary study. American Journal of Orthodontics and Dentofacial Orthopedics, 151(1), 157-166. ttps://doi.org/10.1016/j.ajodo.2016.06.034
  • [4] Lee, S. Y., Choi, D. S., Jang, I., Song, G. S., & Cha, B. K. (2017). The genial tubercle: A prospective novel landmark for the diagnosis of mandibular asymmetry. Korean Journal of Orthodontics, 47(1), 50-58. https://doi.org/10.4041/kjod.2017.47.1.50
  • [5] Daraze, A., Delatte, M., Saba, S. B., & Majzoub, Z. (2017). Craniofacial characteristics in the sagittal dimension: A cephalometric study in Lebanese young adults. International Orthodontics, 15(1), 114-130. https://doi.org/10.1016/j.ortho.2016.12.001
  • [6] Heil, A., Gonzalez, E. L., Hilgenfeld, T., Kickingereder, P., Bendszus, M., Heiland, S., Ozga, A. K., Sommer, A., Lux, Ch. J., & Zingler, S. (2017). Lateral cephalometric analysis for treatment planning in orthodontics based on MRI compared with radiographs: A feasibility study in children and adolescents. PloS one, e0174524. https://doi.org/10.1371/journal.pone.0174524
  • [7] Kishimoto, T., Goto, T., Matsuda, T., Iwawaki, Y., & Ichikawa, T. (2022). Application of artificial intelligence in the dental field: A literature review. Journal of Prosthodontic Research, 66(1), 19-28. https://doi.org/10.2186/jpr.JPR_D_20_00139
  • [8] White, S. C., & Pharaoh, M. J. (2014). Oral radiology, Principles and Interpretations. St. Louis: Mosby.
  • [9] Cobourne, M. T., & DiBiase, A. T. (2009). Handbook of Orthodontics, Mosby Elsevier, Edinburgh, London, New York, Oxford, Philadelphia, St Louis, Sydney, Toronto.
  • [10] Siegel, J. A., McCollough, C. H., & Orton, C. G. (2017). Advocating for use of the ALARA principle in the context of medical imaging fails to recognize that the risk is hypothetical and so serves to reinforce patients’ fears of radiation. Medical Physics, 44(1), 3-6. https://doi.org/10.1002/mp.12012
  • [11] Sobieska, E., & Widmańska-Grzywaczewska, A. (2019). Cephalometry in orthodontic diagnostics - past and present. Forum Ortodontyczne/Orthodontic Forum, 15(2), 120-139. https://doi.org/10.5114/for.2019.88346
  • [12] Ryniewicz, A., Ostrowska, K., Knapik, R., Ryniewicz, W., Krawczyk, M., Sładek, J., & Bojko, Ł. (2015). Evaluation of mapping of selected geometrical parameters in computer tomography using standards. Przegląd Elektrotechniczny, 91(6), 88-91. https://doi.org/10.15199/48.2015.06.17
  • [13] Evaluation of measurement data - Guide to the expression of uncertainty in measurement - JCGM 100:2008.
  • [14] Park, C. S., Park, J. K., Kim, H., Han, S. S., Jeong, H. G., & Park, H. (2012). Comparison of Conventional Lateral Cephalograms with Corresponding CBCT Radiographs. Imaging Science in Dentistry, 42(4), 201-205. https://doi.org/10.5624/isd.2012.42.4.201
  • [15] Wang, R. H., Ho, C. T., Lin, H. H., & Lo, L. J. (2020). Three-dimensional cephalometry for orthognathic planning: Normative data and analyses. Journal of the Formosan Medical Association, 119(1), 191-203. https://doi.org/10.1016/j.jfma.2019.04.001
  • [16] Pinheiro, M., Ma, X., Fagan, M. J., McIntyre, G. T., Lin, P., Sivamurthy, G., & Mossey, P. A. (2019). A 3D cephalometric protocol for the accurate quantification of the craniofacial symmetry and facial growth. Journal of Biological Engineering, 13(1), 42. https://doi.org/10.1186/s13036-019-0171-6
  • [17] Jodeh, D. S., Kuykendall, L. V., Ford, J. M., Ruso, S., Decker, S. J., & Rottgers, S. A. (2019). Adding Depth to Cephalometric Analysis: Comparing Two-and Three-Dimensional Angular Cephalometric Measurements. Journal of Craniofacial Surgery, 30(5), 1568-1571. https://doi.org/10.1097/SCS.0000000000005555
  • [18] Wang, M. F., Otsuka, T., Akimoto, S., & Sato, S. (2013). Vertical Facial Height and Its Correlation with Facial Width and Depth: Three Dimensional Cone Beam Computed Tomography Evaluation Based on Dry Skulls. International Journal of Stomatology & Occlusion Medicine, 6, 120-129. https://doi.org/10.1007/s12548-013-0089-4
  • [19] Vernucci, R. A., Aghazada, H., Gardini, K., Fegatelli, D. A., Barbato, E., Galluccio, G., & Silvestri, A. (2019). Use of an anatomical mid-sagittal plane for 3-dimensional cephalometry: A preliminary study. Imaging Science in Dentistry, 49(2), 159-169. https://doi.org/10.5624/isd.2019.49.2.159
  • [20] Yousefi, F., Rafiei, E., Mahdian, M., Mollabashi, V., Saboonchi, S. S., & Hosseini, S. M. (2019). Comparison efficiency of posteroanterior cephalometry and cone-beam computed tomography in detecting craniofacial asymmetry: A systematic review. Contemporary Clinical Dentistry, 10(2), 358. https://doi.org/10.4103/ccd.ccd_397_18
  • [21] Ramirez-Sotelo, L. R., Almeida, S., Ambrosano, G. M., & Boscolo, F. (2012). Validity and Reproducibility of Cephalometric Measurements Performed in Full and Hemifacial Reconstructions Derived from Cone Beam Computed Tomography. The Angle Orthodontist, 82(5), 827-832. https://doi.org/10.2319/072711-473.1
  • [22] Nur, M., Kayipmaz, S., Bayram, M., Celikoglu, M., Kilkis, D., & Sezgin, O. S. (2012). Conventional Frontal Radiographs Compared with Frontal Radiographs Obtained from Cone Beam Computed Tomography. The Angle Orthodontist, 82(4), 579-584. https://doi.org/10.2319/080311-488.1
  • [23] Shibata, M., Nawa, H., Kise, Y., Fuyamada, M., Yoshida, K., Katsumata, A., Ariji, E., & Goto, S. (2012). Reproducibility of Three-Dimensional Coordinate Systems Based on Craniofacial Landmarks: A Tentative Evaluation of Four Systems Created on Images Obtained by Cone-Beam Computed Tomography with a Large Field of View. The Angle Orthodontist, 82(5), 776-784. https://doi.org/10.2319/102511-662.1
  • [24] Hoff, M. N., Zamora, D., Spiekerman, C., Aps, J. K., Bollen, A. M., Herring, S. W., & Katz, F. (2019). Can cephalometric parameters be measured reproducibly using reduced-dose cone-beam computed tomography? Journal of the World Federation of Orthodontists, 8(2), 43-50. https://doi.org/10.1016/j.ejwf.2019.02.006
  • [25] Ren, R., Luo, H., Su, C., Yao, Y., & Liao, W. (2021). Machine learning in dental, oral and craniofacial imaging: a review of recent progress. PeerJ, 9, e11451. https://doi.org/10.7717/peerj.11451
  • [26] Kim, H., Son, T. G., Cho, H., Shim, E., Hwang, B. Y., Lee, J. W., & Kim, Y. (2020). Automated maxillofacial reconstruction software: development and evaluation. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 8(2), 115-125. https://doi.org/10.1080/21681163.2019.1608308
  • [27] Sam, A., Currie, K., Oh, H., Flores-Mir, C., & Lagravere-Vich, M. (2019). Reliability of different three-dimensional cephalometric landmarks in cone-beam computed tomography: A systematic review. The Angle Orthodontist, 89(2), 317-332. https://doi.org/10.2319/042018-302.1
  • [28] Zamora, N., Cibrian, R., Gandia, J. L., & Paredes, V. (2013). Study between Anb Angle and Wits Appraisal in Cone Beam Computed Tomography (CBCT). Medicina Oral, Patologia Oral y Cirugia Bucal, 18(4), 725-732. https://doi.org/10.4317/medoral.18919
  • [29] Abdi, A. H., Pesteie, M., Prisman, E., Abolmaesumi, P., & Fels, S. (2019). Variational Shape Completion for Virtual Planning of Jaw Reconstructive Surgery. In International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 227-235. https://doi.org/10.1007/978-3-030-32254-0_26
  • [30] Husain, K., Rashid, M., Vitković, N., Mitić, J., Milovanović, J., & Stojković, M. (2018). Geometrical models of mandible fracture and plate implant. Facta Universitatis, Series: Mechanical Engineering, 16(3), 369-379. https://doi.org/10.22190/FUME170710028H
  • [31] Aljehani, D. (2022). Review of the Impact of Mandibular Setback Surgery for the Correction of Class III Malocclusion on the Upper Airway Space. Dentistry Review, 100033. https://doi.org/10.1016/j.dentre.2022.100033
  • [32] Ryniewicz, W., Ryniewicz, A., & Bojko, Ł. (2019). Geometrical parameters of the mandible in 3D CBCT imaging. Biocybernetics and Biomedical Engineering, 39(2), 301-311. https://doi.org/10.1016/j.bbe.2018.09.005
  • [33] Husain, K. N., Stojković, M., Vitković, N., Milovanović, J., Trajanović, M., Rashid, M., & Milovanović, A. (2019). Procedure for creating personalized geometrical models of the human mandible and corresponding implants. Tehnički vjesnik, 26(4), 1044-1051. https://doi.org/10.17559/TV-20181009193111
  • [34] Liu, X., Pang, F., Li, Y., Jia, H., Cui, X., Yue, Y., Yang, X., & Yang, Q. (2019). Effects of Different Positions and Angles of Implants in Maxillary Edentulous Jaw on Surrounding Bone Stress under Dynamic Loading: A Three-Dimensional Finite Element Analysis. Computational and Mathematical Methods in Medicine. https://doi.org/10.1155/2019/8074096
  • [35] Kim, J. H., Park, H. J., & Ryu, J. W. (2021). Association between Temporomandibular Disorder and Masticatory Muscle Weakness: A Case report. Journal of Oral Medicine and Pain, 46(4), 155-160. https://doi.org/10.14476/jomp.2021.46.4.155
  • [36] Toro-Ibacache, V., Ugarte, F., Morales, C., Eyquem, A., Aguilera, J., & Astudillo, W. (2019). Dental malocclusions are not just about small and weak bones: assessing the morphology of the mandible with cross-section analysis and geometric morphometrics. Clinical Oral Investigations, 23(9), 3479-3490. https://doi.org/10.1007/s00784-018-2766-6
  • [37] Orhan, K., & Görürgöz, C. (2021). USG Imaging in Orthodontics. Ultrasonography in Dentomaxillofacial Diagnostics pp. 227–249. Springer, Cham. https://doi.org/10.1007/978-3-030-62179-7_15
  • [38] Ryniewicz, W. (2008). Modeling and structural optimization of prosthetic bridges in the mandibular lateral segment. [Doctoral dissertation, Jagiellonian University Medical College].
  • [39] Ryniewicz, W., Ryniewicz, A. M., & Bojko, Ł. (2016). The effect of a prosthetic crown’s design on the accuracy of mapping an abutment teeth’s shape. Measurement, 91, 620-627. https://doi.org/10.1016/j.measurement.2016.05.019
  • [40] Buezas, G. N., Becerra, F., Echeverría, A. I., Cisilino, A., & Vassallo, A. I. (2019). Mandible strength and geometry in relation to bite force: a study in three caviomorph rodents. Journal of Anatomy, 234(4), 564-575. https://doi.org/10.1111/joa.12946
  • [41] Schaeffer, J., Benton, M. J., Rayfield, E. J., & Stubbs, T. L. (2019). Morphological disparity in theropod jaws: comparing discrete characters and geometric morphometrics. Palaeontology, 63(2), 283-299. https://doi.org/10.1111/pala.12455
  • [42] Sella-Tunis, T., Pokhojaev, A., Sarig, R., O’Higgins, P., & May, H. (2018). Human mandibular shape is associated with masticatory muscle force. Scientific Reports, 8(1), 1-10. https://doi.org/10.1038/s41598-018-24293-3
  • [43] Ryniewicz, W., Ryniewicz, A. M., Bojko, Ł., Pełka, P., Filipek, J., Williams, S., & Loster, B. W. (2016). Three-dimensional finite element simulation of intrusion of the maxillary central incisor. Biocybernetics and Biomedical Engineering, 36(2), 385-390. https://doi.org/10.1016/j.bbe.2016.02.003
Uwagi
1. The authors would like to thank Prof. Andrzej Ryniewicz from the State University of Applied Sciences in Nowy Sącz, Poland, for valuable metrological suggestions on the performed experiment.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16fa4549-bb53-4a31-89a7-cf03633ed9f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.