PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A strongly positive sulphur isotopic shift in late Ediacaran-early Cambrian seawater : evidence from evaporites in the Salt Range Formation, northern Pakistan

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Salt Range Formation in northern Pakistan is globally well-known for its extremely large evaporite deposits dated to the upper Ediacaran-lower Cambrian. This huge evaporite belt formed an area covering present-day parts of India, Pakistan, Iran, Oman, and even South China (~200,000 km2 in South China). Sulphate minerals, including anhydrite and gypsum, can continuously record seawater sulphur isotopic composition. Until now, there was only one dataset reporting the isotopic composition of evaporites in Pakistan. This study reports new data, which points to a strongly positive sulphur isotopic shift (>+30‰, VCDT values) in the Salt Range Formation in Pakistan. Based on the stratigraphic position, similarity in lithology, age, and sulphur isotope data of the evaporitic sequences, it can be inferred that the Neoproterozoic Indo-Pakistan Plate and the Yangtze Platform were closely related palaeogeographically during the terminal Neoproterozoic. This interpretation can improve understanding of the palaeogeographical evolution of the area during the Neoproterozoic, with particular reference to the origin of biogeochemical cycles and the diagenetic evolution of the evaporitic deposits.
Rocznik
Strony
art. no. 30
Opis fizyczny
Bibliogr. 111 poz., fot., rys., tab., wykr.
Twórcy
autor
  • Chinese Academy of Sciences, Nanjing Institute of Geology and Palaeontology, State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing, 210008, China
autor
  • Petroleum Exploration and Development Research Institute, SINOPEC, 100083, Beijing, China
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Research Institute of Petroleum Exploration and Development, CNPC, Beijing, 100083, China
autor
  • University of the Punjab, Institute of Geology, Quaid-e-Azam Campus, Lahore 54590, Pakistan
  • University of the Punjab, Institute of Geology, Quaid-e-Azam Campus, Lahore 54590, Pakistan
autor
  • Nanjing University, School of Earth Sciences and Engineering, Institute of Geo-Fluids, State Key Laboratory for Mineral Deposit Research, Nanjing, 210093, China
Bibliografia
  • 1. Ahmad, W., Alam, S., 2007. Organic geochemistry and source rock characteristics of Salt Range Formation, Potwar Basin, Pakistan. Journal of Hydrocarbon Research, 17: 37-59.
  • 2. Ahsan, N., Mairaj, F.A., Rehman, S.U., Ali, A., 2013. Subsurface structural reconstruction of Joya Mair structure, southeast Potwar sub-basin, Pakistan. International Journal of Agriculture and Applied Sciences, 5: 17-26.
  • 3. Alavi, M., 2004. Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. American Journal of Science, 304: 1-20.
  • 4. Allen, P.A., 2007. The Huqf Supergroup of Oman: basin development and context for Neoproterozoic glaciation. Earth-Science Reviews, 84: 139-185.
  • 5. Asrarullah, P., 1967. Geology of the Khewra Dome. Proceedings of the 18th and 19th combined session of All Pakistan Science Conference, University of Sind, Hyderabad, Part-III, Abstracts, F3-F4.
  • 6. Banerjee, D.M., Strauss, H., Bhattacharya, S.K., Kumar, V., Mazumdar, A., 1998. Isotopic composition of carbonate and sulphates, potash mineralisation and basin architecture of the Nagaur-Ganganagar evaporate basin (northwestern India) and their implications on the Neoproterozoic exogenic cycle. Mineralogical Magazine, 62A: 106-107.
  • 7. Becker, S., Reuning, L., Amthor, J.E., Kukla, P.A., 2019. Diagenetic processes and reservoir heterogeneity in salt-encased microbial carbonate reservoirs (Late Neoproterozoic, Oman). Geofluids, Article ID 5647857. https://doi.org/10.1155/2019/5647857.
  • 8. Benison, K.C., 1995. Surface water paleotemperatures from Permian Nippewalla Group halite, Kansas. Carbonates and Evaporites, 10: 242-248.
  • 9. Bottrell, S.H., Newton, R.J., 2005. Reconstruction of changes in global sulfur cycling from marine sulfate isotopes. Earth-Science Reviews, 75: 59-83.
  • 10. Bukowski, K., Galamay, A.R., Góralski, M., 2000. Inclusion brine chemistry of the Badenian salt from Wieliczka. Journal of Geochemical Exploration, 69-70: 87-90.
  • 11. Bukowski, K., Czapowski, G., Karoli, S., Bąbel, M., 2007. Sedimentology and geochemistry of the Middle Miocene (Badenian) salt-bearing succession from East Slovakian Basin (Zbudza Formation). Geological Society, Special Publication, 285: 247-264.
  • 12. Burke, A., Present, T.M., Paris, G., Rae, E., Sandilands, G.H., Gaillardet, J., Peucker-Ehrenbrink, B., Fischer, W.W., McClelland, J.W., Spencer, R., Voss, B., Adkins, J.F., 2018. Sulfur isotopes in rivers: insights into global weathering budgets, pyrite oxidation, and the modern sulfur cycle. Earth and Planetary Science Letters, 496: 168-177.
  • 13. Chaudhuri, S., Clauer, N., 1992. History of marine evaporites: constraints from radiogenic isotopes. Lecture Notes in Earth Sciences, 43: 177-198.
  • 14. Chen, C.X., Ni, P., Cai, K.Q., Zhai, Y.S., Deng, J., 2003. The minerogenic fluids of magnesite and talc deposits in the Paleoproterozoic Mg-rich carbonate formations in Eastern Liaoning Province (in Chinese with English summary). Geological Reviewer, 49: 646-651.
  • 15. Claypool, G.E., Holser, W.T., Kaplan, I.R., Sakai, H., Zak, I., 1980. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology, 28: 190-260.
  • 16. Craig, J., Thurow, J., Thusu, B., Whitham, A., Abutarruma, Y., 2009. Global Neoproterozoic petroleum systems: the emerging potential in North Africa. Geological Society Special Publications, 326: 1-25.
  • 17. Cui, H., Kaufman, A.J., Xiao, S., Zhu, M., Zhou, C., Liu, X.M., 2015. Redox architecture of an Ediacaran ocean margin: integrated chemostratigraphic δ13C-δ34S-87Sr/86Sr-Ce/Ce*) correlation of the Doushantuo Formation, South China. Chemical Geology, 405: 4-62.
  • 18. Cui, H., Kaufman, A.J., Xiao, S.H., Peek, S., Cao, H.S., Min, X., Cai, Y.P., Siegel, Z., Liu, X.M., Peng, Y.B., 2016. Environmental context for the terminal Ediacaran biomineralization of animals. Geobiology, 14: 344-363.
  • 19. Dasgupta, U., Bulgauda, S.S., 1994. An overview of the geology and hydrocarbon occurrences in the western part of Bikaner-Nagaur Basin. Indian Journal of Petroleum Geology, 3: 1-17.
  • 20. Dey, R.C., 1991. Trans-Aravalli Vindhyan evaporites under the semi-desertic plains of Western India-significance of depositional features. Journal of the Geological Society of India, 37: 136-150.
  • 21. Dong, A., Zhu, X.K., Li, S.Z., Kendall, B., Wang, Y., Gao, Z., 2016. Genesis of a giant Paleoproterozoic strata-bound magnesite deposit: constraints from Mg isotopes. Precambrian Research, 281: 673-683.
  • 22. Fan, H.F., Wen, H.J., Zhu, X.K., Hu, R.Z., Tian, S.H., 2013. Hydrothermal activity during Ediacaran-Cambrian transition: silicon isotopic evidence. Precambrian Research, 224: 23-35.
  • 23. Faramarzi, N.S., Amini, S., Schmitt, A.K., Hassanzadeh, J., Borg, G., Mckeegan, K., Mortazavi, S.M., 2015. Geochronology and geochemistry of rhyolites from Hormuz Island, southern Iran: a new record of Cadomian arc magmatism in the Hormuz Formation. Lithos, 236: 203-211.
  • 24. Fatmi, A.N., 1973. Lithostratigraphic units of the Kohat-Potwar Province, Indus Basin. Geological Survey of Pakistan Memoirs, 10: 1-80.
  • 25. Fike, D.A., Grotzinger, J.P., 2008. A paired sulfate-pyrite delta S-34 approach to understanding the evolution of the Ediacaran-Cambrian sulfur cycle. Geochimica et Cosmochimica Acta, 72: 2636-2648.
  • 26. Fike, D.A., Grotzinger, J.P., Pratt, L.M., Summons, R.E., 2006. Oxidation of the Ediacaran Ocean. Nature, 444: 744-747.
  • 27. Fox, J.S., Videtich, P.E., 1997. Revised estimate of δ34S for marine sulfates from the Upper Ordovician: data from the Williston Basin, North Dakota, USA. Applied Geochemistry, 12: 97-103.
  • 28. Galamay, A.R., Bukowski, K., Czapowski, G., 2003. Chemical composition of brine inclusions in halite from clayey salt (zuber) facies from the Upper Tertiary (Miocene) evaporite basin (Poland). Journal of Geochemical Exploration, 78-79: 509-511.
  • 29. Galamay, A.R., Bukowski, K., Sydor, D.V., Meng, F., 2020. The ultramicrochemical analyses (UMCA) of fluid inclusions in halite and experimental research to improve the accuracy of measurement. Minerals, 10: 823.
  • 30. Gao, H.C., Chen, F.L., Zhao, G.R., Liu, Z.F., 2009. Advances, problems and prospect in studies of origin of salt rocks of the Paleogene Shahejie Formation in Dongpu Sag (in Chinese with English summary). Journal of Palaeogeography, 11: 251-264.
  • 31. Gee, E.R., 1945. The age of saline series of Punjab and Kohat. Proceedings of the National Academy of Sciences, India 14, Part 6: 269-310.
  • 32. Gorjan, P., Veevers, J.J., Walter, M.R., 2000. Neoproterozoic sulfur-isotope variation in Australia and global implications. Precambrian Research, 100: 151-179.
  • 33. Grantham, P.J., Lijmbach, G.W.M., Posthuma, J., 1990. Geochemistry of crude oils in Oman. Geological Society Special Publications, 50: 317-328.
  • 34. Grelaud, S., Sassi, W., de Lamotte, D.F., Jaswal, T., Roure, F., 2002. Kinematics of eastern Salt Range and South Potwar Basin (Pakistan): a new scenario. Marine and Petroleum Geology, 19: 1127-1139.
  • 35. Grinenko, V.A., Krouse, H.R., 1992. Isotope data on the nature of riverine sulfates. Mitteilungen Geologisch-Paläontologisches Institut der Universität Hamburg, 72: 9-18.
  • 36. Grosjean, E., Love, G.D., Kelly, A.E., Taylor, P.N., Summons, R. E., 2012. Geochemical evidence for an Early Cambrian origin of the ‘Q' oils and some condensates from north Oman. Organic Geochemistry, 45: 77-90.
  • 37. Halverson, G.P., Hurtgen, M.T., 2007. Ediacaran growth of the marine sulfate reservoir. Earth and Planetary Science Letters, 263: 32-44.
  • 38. Hałas, S., Szaran, J., 1999. Low-temperature thermal decomposition of sulfate to SO2 for on-line 34S/32S analysis. Analytical Chemistry, 77: 3254-3257.
  • 39. He, T., Zhu, M., Mills, B.J.W., Wynn, P.M., Zhuravlev, A.Y., Tostevin, R., Pogge von Strandmann, P.A.E., Yang, A., Poulton, S.W., Shields, G.A., 2019. Possible links between extreme oxygen perturbations and the Cambrian radiation of animals. Nature Geoscience, 12: 468-474.
  • 40. Hoefs, J., 2004. Stable Isotope Geochemistry (5th edition). Springer, Berlin.
  • 41. Hoffman, P.F., Kaufman, A.J., Halverson, G.P., Schrag, D.P., 1998. A Neoproterozoic Snowball Earth. Science, 281: 1342-1346.
  • 42. Holser, W.T., 1977. Catastrophic chemical events in the history of the ocean. Nature, 267: 403-408.
  • 43. Holser, W.T., 1984. Gradual and abrupt shifts in ocean chemistry during Phanerozoic time. In: Patterns of Change in Earth Evolution (eds. H.D. Holland and A.F. Trendall): 123-143. Springer-Verlag, Berlin.
  • 44. Holser, W.T., Kaplan, I.R., 1966. Isotope geochemistry of sedimentary sulfates. Chemical Geology, 1: 93-135.
  • 45. Holser, W.T., Schidlowski, M., Mackenzie, F.T., Maynard, J.B., 1988. Geochemical cycles of carbon and sulfur. In: Chemical Cycles in the Evolution of the Earth (eds. C.B. Gregor, R.M. Garrels, F.T. Mackenzie and J.B. Maynard): 107-173. Wiley, New York.
  • 46. Hough, M.L., Shields, G.A., Evins, L.Z., Strauss, H., Henderson, R.A., Mackenzie, S., 2006. A major sulphur isotope event at c. 510 Ma: a possible anoxia-extinction volcanism connection during the Early-Middle Cambrian transition? Terra Nova, 18: 257-263.
  • 47. Houghton, M.L., 1980. Geochemistry of the Proterozoic Hormuz Evaporites, Southern Iran. M.Sc. Thesis, University of Oregon.
  • 48. Hurtgen, M.T., Arthur, M.A., Suits, N.S., Kaufman, A.J., 2002. The sulfur isotopic composition of Neoproterozoic seawater sulfate: implications for a snowball Earth? Earth and Planetary Science Letters, 203: 413-429.
  • 49. Hurtgen, M.T.,Arthur, M.A., Halverson, G.P., 2005. Neoproterozoic sulfur isotopes, the evolution of microbial sulfur species, and the burial efficience of sulfide as sedimentary pyrite. Geology, 33: 41-44.
  • 50. Hussain, S.A., Han, F.Q., Han, J., Khan, H., Widory, D., 2020. Chlorine isotopes unravel conditions of formation of the Neoproterozoic rock salts from the Salt Range Formation, Pakistan. Canadian Journal of Earth Science, 57: 698-708.
  • 51. Hussain, S.A., Han, F.-Q., Ma, Z., Hussain, A., Mughal, M.S., Han, J., Alhassan, A., Widory, D., 2021. Unraveling sources and climate conditions prevailing during the deposition of Neoproterozoic evaporites using coupled chemistry and Boron isotope compositions (δ11B): the example of the Salt Range, Punjab, Pakistan. Minerals, 11: 161.
  • 52. Husseini, M.I., Husseini, S.I., 1990. Origin of the Infracambrian Salt Basins of the Middle East. Geological Society Special Publications, 50: 279-292.
  • 53. Jaworska, J., Wilkosz, P., 2012. An oxygen and sulfur isotopic study of gypsum from the Mogilno Salt Dome cap-rock (Poland). Geological Quarterly, 56: 249-250.
  • 54. Jiang, G., Sohl, L.E., Christie-Blick, N., 2003. Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze block (south China): paleogeographic implications. Geology, 31: 917-920.
  • 55. Jones, C.L., 1970. Potash in halitic evaporite salt, western Pakistan. United States Department of the Interior, U.S. Geological Survey Professional Paper, 770 D: 140-145.
  • 56. Kadri, I.B., 1995. Petroleum Geology of Pakistan. Pakistan Petroleum Limited Publication: 136-142.
  • 57. Kampschulte, A., Strauss, H., 2004. The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chemical Geology, 204: 255-286.
  • 58. Khan, I., Zhong, N., Luo, Q., Ai, J., Yao, L., Luo, P., 2020. Maceral composition and origin of organic matter input in Neoproterozoic-Lower Cambrian organic-rich shales of Salt Range Formation, upper Indus Basin, Pakistan. International Journal of Coal Geology, 217: 103-319.
  • 59. Knauth, L.P., 1998. Salinity history of the Earth's early ocean. Nature, 395: 554-555.
  • 60. Knauth, L.P., 2005. Temperature and salinity history of the Precambrian ocean: implications for the course of microbial evolution. Palaeogeography Palaeoclimatology Palaeoecology, 219: 53-69.
  • 61. Kovalevich, V.M., Peryt, T.M., Petrichenko, O.I., 1998. Secular variation in seawater chemistry during the Phanerozoic as indicated by brine inclusions in halite. The Journal of Geology, 106: 695-712.
  • 62. Kovalevych, V.M., Peryt, T.M., Carmona, V., Sydor, D.V., Vovnyuk S.V., Halas, S., 2002. Evolution of Permian seawater: evidence from fluid inclusions in halite. Neues Jahrbuch für Mineralogie Abhandlungen, 178: 27-62.
  • 63. Kovalevych, V.M., Marshall, T., Peryt, T.M., Petrychenko, O.Y., Zhukova, S., 2006. Chemical composition of seawater in Neoproterozoic: results of fluid inclusion study of halite from the Salt Range (Pakistan) and Amadeus Basin (Australia). Precambrian Research, 144: 39-51.
  • 64. Kovalevych, V.M., Paul, J., Peryt, T.M., 2009. Fluid inclusions in halite from the Röt (lower Triassic) salt deposit in central Germany: evidence for seawater chemistry and conditions of salt deposition and recrystallization. Carbonates and Evaporites, 24: 45-57.
  • 65. Li, Q.K., Fan, Q.S., Shan, F.S., Qin, Z.J., Li, J.S., Yuan, Q., Wei, H.C., Wang, M.X., Li, Y.Q., Shi, G.C., 2018. The variation of sulfur isotope in marine-continental evaporites and its geochemical applications (in Chinese with English summary). Journal of Salt Lake Research, 26: 73-79.
  • 66. Longinelli, A., 1989. Oxygen-18 and sulphur-34 in dissolved oceanic sulphate and phosphate. In: Handbook of environmental isotope geochemistry, 3 (eds. P. Fritz and J.C., Fontes): 219-255. Elsevier, Amsterdam.
  • 67. Losey, A., Benison, K.C., 2000. Silurian paleoclimate data through fluid inclusions in the Salina Formation halite of the Michigan Basin. Carbonates and Evaporites, 15: 28-36.
  • 68. Lowenstein, T.K., Timofeeff, M.N., Brennan, S.T., Hardie, L.A., Demicco, R.V., 2001. Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions. Science, 294: 1086-1088.
  • 69. Mazumdar, A., Bhattacharya, S.K., 2004. Stable isotopic study of late Neoproterozoic-early Cambrian(?) sediments from Nagaur-Ganganagar basin, western India: possible signatures of global and regional C-isotopic events. Geochemical Journal, 38: 163-175.
  • 70. Mazumdar, A., Strauss, H., 2006. Sulfur and strontium isotopic compositions of carbonate and evaporite rocks from the late Neoproterozoic-early Cambrian Bilara Group (Nagaur Basin, India): constraints on intrabasinal correlation and global sulfur cycle. Precambrian Research, 149: 217-230.
  • 71. Mazumdar, A., Goldberg, T., Strauss, H., 2008. Abiotic oxidation of pyrite by Fe (III) in acidic media and its implications for sulfur isotope measurements of lattice-bound sulfate in sediments. Chemical Geology, 253: 30-37.
  • 72. Mello, M.R., Mohriak, W.U., Koutsoukos, E.A.M., Figueira, J.C.A., 1991. Brazilian and West African oils: generation, migration, accumulation and correlation. Proceedings of the Thirteenth World Petroleum Congress, New York, John Wiley: 153-164.
  • 73. Meng, F.W., Zhang, Z.L., Schiffbauer, J.D., Zhuo, Q.G., Zhao, M.J., Ni, P., Liu, W.H., Ahsan, N., Rehman, S.U., 2019. The Yudomski event and subsequent decline: new evidence from δ34S data of lower and middle Cambrian evaporites in the Tarim Basin, western China. Carbonates and Evaporites, 34: 1117-1129.
  • 74. Meng, F.W., Ni, P., Schiffbauer, J.D., Yuan, X.L., Zhou, C.M., Wang, Y.G., Xia, M.L., 2011a. Ediacaran seawater temperature: evidence from inclusions of Sinian halite. Precambrian Research, 184: 63-69.
  • 75. Meng, F.W., Ni, P., Wang, T.G., Yan, K., Wang, G.G., Zhao, C., Song, W.M., 2011b. Chemical composition of the ancient lake at Jintan Salt Mine: evidence from fluid inclusions in halite (in Chinese with English summary). Acta Micropalaeontologica Sinica, 28: 324-328.
  • 76. Meng, F.W., Liu, C.L., Ni, P., 2012. To forecast sylvite deposits using the chemistry of fluid inclusions in halite (in Chinese with English summary). Acta Micropalaeontologica Sinica, 29: 62-69.
  • 77. Meng, F.W., Galamay, A.R., Ni, P., Yang, C.H., Li, Y.P., Zhuo, Q.G., 2014. The major composition of a middle-late Eocene salt lake in the Yunying depression of Jianghan Basin of Middle China based on analyses of fluid inclusions in halite. Journal of Asian Earth Sciences, 85: 97-105.
  • 78. Meng, F., Zhang, Y., Galamay, A.R., Bukowski, K., Ni, P., Xing, E., Ji, L., 2018. Ordovician seawater composition: evidence from fluid inclusions in halite. Geological Quarterly, 62 (2): 344-352.
  • 79. Misi, A., Veizer, J., 1998. Neoproterozoic carbonate sequences of the Una Group, Irece Basin, Brazil: chemostratigraphy, age and correlations. Precambrian Research, 89: 87-100.
  • 80. Och, L.M., Cremonese, L., Shields-Zhou, G.A., Poulton, S.W., Struck, U., Ling, H., Strauss, H., Zhu, M., 2016. Palaeoceanographic controls on spatial redox distribution over the Yangtze Platform during the Ediacaran-Cambrian transition. Sedimentology,63: 378-410.
  • 81. Paytan, A., Gray, E.T., Ma, Z., Erhardt, A., Faul, K., 2012. Application of sulphur isotopes for stratigraphic correlation. Isotopes in Environmental and Health Studies, 48: 195-206.
  • 82. Peryt, T.M., Hałas, S., Kovalevych, V.M., Petrychenko, O.Y., Dzhinoridze, N.M., 2005. The sulphur and oxygen isotopic composition of Lower Cambrian anhydrites in East Siberia. Geological Quarterly, 49 (2): 235-242.
  • 83. Peters, K.E., Clark, M.E., Das Gupta, U., Lee, C.Y., 1995. Recognition of an Infracambrian source rock based on biomarkers in the Baghewala-1 oil, India. AAPG Bulletin, 79: 1481-1494.
  • 84. Petrychenko, Y., Peryt, T.M., 2004. Geochemical conditions of deposition in the Upper Devonian Prypiac' and Dnipro-Donets evaporite basins (Belarus and Ukraine). Journal of Geology, 112: 577-592.
  • 85. Petrychenko, O.Y., Peryt, T.M., Chechel, W.I., 2005. Early Cambrian seawater chemistry from fluid inclusions in halite from Siberian evaporites. Chemical Geology, 219: 149-161.
  • 86. Present, T.M., Adkins, J.F., Fischer, W.W., 2020. Variability in sulfur isotope records of Phanerozoic seawater sulfate. Geophysical Research Letters, 47. Art. No. e2020GL088766.
  • 87. Raab, M., Spiro, B., 1991. Sulfur isotope variations during seawater evaporation with fractional crystallization. Chemical Geology, 86: 323-333.
  • 88. Sakai, H., 1972. Oxygen isotope ratios of some evaporites from Precambrian to Recent ages. Earth and Planetary Science Letters, 15: 201-205.
  • 89. Satterfield, C.L., Lowenstein, T.K., Vreeland, R.H., Rosenzweig, W.D., 2005. Paleobrine temperatures, chemistries, and paleoenvironments of Silurian Salina Formation F-1 Salt, Michigan Basin, USA, from petrography and fluid inclusions in halite. Journal of Sedimentary Research, 75: 534-546.
  • 90. Schröder, S., Schreiber, C., Amthor, J.E., Matter, A., 2004. Stratigraphy and environmental conditions of the terminal Neoproterozoic-Cambrian period in Oman: evidence from sulphur isotopes. Journal of the Geological Society, 161: 489-499.
  • 91. Schröder, S., Bekker, A., Beukes, N.J., Strauss, H., van Niekerk, H.S., 2008. Rise in seawater sulphate concentration associated with the Paleoproterozoic positive carbon isotope excursion: evidence from sulphate evaporites in the ~2.2-2.1 Gyr shallow-marine Lucknow Formation, South Africa. Terra Nova, 20: 108-117.
  • 92. Shah, S.M.I., 1977. Stratigraphy of Pakistan. Memoir of Geological Survey of Pakistan, 12: 1-138.
  • 93. Shah, S.M.I., 2009. Stratigraphy of Pakistan. Memoir of Geological Survey of Pakistan, 22: 1-381.
  • 94. Shields, G.A., Strauss, H., Howe, S.S., Siegmund, H., 1999. Sulphur isotope composition of sedimentary phosphorites from the basal Cambrian of China: implications for Neoproterozoic-Cambrian biogeochemical cycling. Journal of the Geological Society, 156: 943-956.
  • 95. Shields, G.A., Mills, B.J.W., 2019. Sulfur cycle imbalance and environmental change during the Ediacaran Period. Estudios Geológicos, 75, https://doi.org/10.3989/egeol.43605.569.
  • 96. Shields, G., Kimura, H., Yang, J.D., Gammon, P., 2004. Sulphur isotopic evolution of Neoproterozoic-Cambrian seawater: new francolite-bound sulphate δ34S data and a critical appraisal of the existing record. Chemical Geology, 204: 163-182.
  • 97. Spear, N., Holland, H.D., Garcia-Veígas, J., Lowenstein, T.K., Giegengack, R., Peters, H., 2014. Analyses of fluid inclusions in Neoproterozoic marine halite provide oldest measurement of seawater chemistry. Geology, 42: 103-106.
  • 98. Strauss, H., 1993. The sulfur isotopic record of Precambrian sulfates: new data and a critical evaluation of the existing record. Precambrian Research, 63: 225-246.
  • 99. Strauss, H., 2003. Sulphur isotopes and the early Archaean sulphur cycle. Precambrian Research, 126: 349-361.
  • 100. Strauss, H., Banerjee, D.M., 1998. The sulphur isotopic composition of Neoproterozoic to early Cambrian seawater - evidence from the cyclic Hanseran evaporites, NW India. Mineralogical Magazine, 62A: 1467-1468.
  • 101. Strauss, H., Banerjee, D.M., Kumar, V., 2001. The sulfur isotopic composition of Neoproterozoic to early Cambrian seawater - evidence from the cyclic Hanseran evaporites, NW India. Chemical Geology, 175: 17-28.
  • 102. Sweeney, R.E., Kaplan, I.R., 1980. Stable isotope composition of dissolved sulfate and hydrogen sulfide in the Black Sea. Marine Chemistry, 9: 145-152.
  • 103. Thode, H.G., Monster, J., Dunford, H., 1961. Sulphur isotope geochemistry. Geochimica et Cosmochimica Acta, 25: 159-174.
  • 104. Tostevin, R., He, T., Turchyn, A.V., Wood, R.A., Penny, A.M., Bowyer, F., Antler, G., Shields, G.A., 2017. Constraints on the late Ediacaran sulfur cycle from carbonate associated sulfate. Precambrian Research, 290: 113-125.
  • 105. Wang, G.L., Wang, T.G., Han, K.Y., Wang, L.S., Shi, S.B., 2015. Recognition of a novel Precambrian petroleum system based on isotopic and biomarker evidence in Yangtze platform, South China. Marine and Petroleum Geology, 68: 414-426.
  • 106. Warren, J.K., 2016. Evaporites: a Geological Compendium (2nd edition). Springer, Berlin.
  • 107. Wynne, A.B., 1878. Geology of the Salt Range in the Punjab. Memoirs of the Geological Survey of India, 14: 1-313.
  • 108. Yao, W.Q., Wortmann, U.G., Paytan, A., 2019. Sulfur isotopes - use for stratigraphy during times of rapid perturbations. Stratigraphy and Timescales, 4: 1-33.
  • 109. Zhang, T.G., Chun, X.L., Zhang, Q.R., Feng, L.J., Huo, W.G., Variations of sulfur and carbon isotopes in seawater during the Doushantuo stage in late Neoproterozoic. Chinese Science Bulletin, 48: 1375-1380.
  • 110. Zhang, T.G., Chun, X.L., Zhang, Q.R., Feng, L.J., Huo, W.G., The sulphur and carbon isotope records in carbonates of the Dengying Formation in the Yangtze Platform, China. Acta Petrologica Sinica, 20: 717-724.
  • 111. Zhao, Z.Q., Xing, Y.S., Ma, G.G., Yu, W., Wang, Z., 1980. The Sinian System of Eastern Yangtze Gorges, Hubei (in Chinese with English summary). In: Research on Precambrian Geology: Sinian Suberathem in China (ed. Y.L. Wang ): 31-55. Tianjin Science and Technology Press, Tianjin.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16f8a81d-3bf0-4c15-986a-7fa9e8e1d49a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.