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Abstract

This paper utilised computational fluid dynamics (CFD) technology to calculate the resistance of a novel high-speed 
quadramaran in calm water using the Navier‒Stokes (N‒S) equation, analysed the total resistance, frictional resistance, 
and residual resistance characteristics of this novel high-speed quadramaran at different length Froude numbers, 
and compared them with the results of a conventional high-speed catamaran with the same displacement. The results 
showed that the total resistance of the quadramaran had a significant hump at the Froude number of 0.6, due to 
the complexity of the wave interference among the four demihulls, and the hump value was about 1.6 times that of 
the catamaran. Above the hump speed, the total resistance of the quadramaran decreased with the increase of the 
Froude number, until reaching the Froude number of 1.06, when the curve became flat, and it showed a maximum 
resistance reduction of 40% at the Froude number of 1.66 compared with the catamaran, where the total resistance curve 
was steep. The frictional resistance of the quadramaran increased gradually with the growth of the Froude number, 
which was basically consistent with the change trend of the catamaran. The residual resistance of the quadramaran 
first rose and then reduced with the rising Froude number, the curve showed a large hump due to the adverse wave 
interference, and the hump value was about 1.7 times that of the catamaran. Above the Froude number of 1.06, as 
the wave interference changed from adverse to favourable, the quadramaran had lower residual resistance than the 
catamaran. The bow and stern demihulls of the quadramaran were also analysed for their resistance characteristics. 
The total resistance of the bow demihulls increased gradually with the increase of the Froude number, the curve had 
a small hump at the Froude number of 0.7, and above the hump speed, the curve was steep. The total resistance of 
the stern demihulls first increased and then decreased with the growth of the Froude number, the hump value at the 
Froude number of 0.85 was significant and was about 2 times that of the bow demihulls, and the curve became flat 
above the Froude number of 1.51.
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introduction

In recent years, multi-hulls have been widely studied by 
a large number of researchers because of their wide deck 
area, excellent speed, and seakeeping performance. The 
catamaran is one of the most widely studied and applied hull 
forms, with relatively variable designs, including the small 
waterline catamaran (SWATH), wave-piercing catamaran, 
partial air cushion support catamaran (PACSCAT) [1‒2], 
asymmetric catamaran [3‒5], supercritical catamaran 
[6], etc. Trimarans and pentamarans mostly use the form 
of a large main hull in the middle and small demihulls 
distributed on both sides of the main hull, while the hull 
forms are mostly slender or small waterline hulls. However, 
there is not much research on the quadramaran, and most 
researchers who study quadramarans generally take slender 
or small waterline hulls as the hull forms. Peng [7] utilised 
the boundary element method in terms of the Green function 
to compute the resistance and motion responses of a slender 
catamaran, trimaran, quadramaran, and pentamaran by 
altering the configurations of the demihulls. Fang et al. [8] 
took the small waterline quadramaran (SLICE) as the research 
object to investigate its resistance characteristics, compared 
with a SWATH of the same scale, and concluded that the 
SLICE had certain resistance advantages only under the 
condition of shallow draft. Michell’s linear wave resistance 
theory method was adopted by Cai et al. [9] to study the wave-
making resistance characteristics of a SWATH, trimaran, 
SLICE, and pentamaran at different Froude numbers, and 
obtain the proportion of wave-making resistance. A series 
of numerical simulations based on FLUENT software was 
performed by Zhang et al. [10], and the total resistance 
characteristics and flow field distributions of a small waterline 
catamaran, trimaran, and quadramaran were analysed. Based 
on Neumann‒Michell theory, Liu et al. [11] used the self-
developed NMShip-SJTU solver to numerically calculate the 
wave-making resistance of a staggered quadramaran with 
slender demihulls at different Froude numbers and different 
longitudinal and transverse positions, analysing the wave 
interference characteristics. Yanuar et al. [12-13] conducted 
a set of experiments in calm water to investigate the effect 
of the quadramaran configurations on the total resistance 
coefficient and interference factor. 

As a prominent research method, computational fluid 
dynamics (CFD) technology is widely applied by many 
researchers in the process of ship design, and can accurately 
and effectively forecast the hydrodynamic performance of 
ships. Farkas et al. [14] performed a number of numerical 
simulations of an S60 catamaran at different separations 
to obtain the characteristics of the total resistance and the 
wave interference factor, and the numerical results showed 
good agreement with the experimental results. Hu et al. [15] 
developed an asymmetric catamaran and investigated its 
resistance, rise-up, and dynamic trim angle by altering the 
lateral separation and longitudinal stagger based on the CFD 
method, and the deviations of the numerical results from the 
experimental results were less than 6%. Ebrahimi et al. [16] 

proposed a planing catamaran with transverse steps, analysed 
the aero-hydrodynamic effect in calm water at different 
displacements, and numerically calculated the resistance, 
the results of which agreed well with the experimental data. 
Li et al. [17] investigated the seakeeping characteristics 
of a slender trimaran equipped with and without a T-foil 
near the bow by experimental and numerical methods. The 
numerical simulations were validated by comparisons with 
the experimental tests. A range of numerical simulations 
were carried out by Heidari et al. [18], and the effects of the 
trim, heel, and yaw angles of the side hulls on the resistance 
and flow field characteristics of a trimaran were investigated; 
by contrast with the experimental values, the maximum 
numerical error was only 5%. Yildiz et al. [19] analysed the 
total resistance and wave profiles of a trimaran with nine 
different outrigger configurations by using the CFD method, 
and obtained good agreements when compared with the 
experimental results. To reduce the resistance in calm water 
and wavy conditions, Nazemian et al. [20] took the numerical 
results as the objective function, which were computed by 
CFD simulation and matched well with the experimental 
data, and utilised an arbitrary shape deformation method to 
optimise the hull shape of a wave-piercing trimaran. All the 
studies mentioned above applied the STAR CCM+ solver to 
perform numerical calculations, and good consistencies were 
shown between the numerical and experimental results, which 
verified the validity of the CFD method. So, this indicates that 
the CFD method could meet the requirements of practical 
engineering applications and reliably and accurately predict 
the hydrodynamic performance of multi-hulls.

In this paper, a novel high-speed quadramaran with 
a service speed above 30 kn is developed. A high-speed 
V-shaped hull form is applied to the demihull, which is 
different from the slender or small waterline quadramaran 
studied by previous researchers. It is undeniable that the 
slender hull or small waterline hull is conducive to reducing 
the wave-making resistance of multi-hulls, but the draft of the 
hull at the same displacement is deep, which is not conducive 
to navigating in a shallow fairway and is detrimental to 
the development of the hull form towards heavy loads and 
large sizes. Compared with a slender hull, the shape of the 
demihull makes the hull space more spacious, facilitates the 
arrangement of equipment, and makes the draft shallower. As 
the most widely used, the V-shaped hull form has excellent 
high-speed performance, but its seakeeping performance 
is unsatisfactory in a rough sea state. The advantage of 
multi-hulls is that they have great seakeeping and stability 
performance in rough sea states, but the wave-making 
resistance will be larger than that of monohulls due to the 
wave interference among the demihulls at high speed. The 
ship type proposed is based on the quick reach needs of 
windfarm maintenance and ocean transportation, which 
require a service speed above 30 kn. The hull form integrates 
the advantages of the V-shaped hull and multi-hull, which 
means that the quadramaran has not only a remarkable high-
speed performance, but also excellent seakeeping in rough 
sea states. This paper studies the resistance characteristics 
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of the quadramaran in calm water, including the resistance, 
rise-up, dynamic trim angle, and wave-making interference. 
Analyses are carried out with several numerical simulations 
based on the mature STAR CCM+ solver. The computed 
results could provide data support for the further study of 
ship model experiments.

NUMERICAL SIMULATION METHOD

GOVERNING EQUATIONS AND THEORIES

Considering the influence of turbulent pulsation, the 
governing equations of fluids are commonly based on 
the time-averaged method [21‒22]. The continuous equation 
and the Reynolds-Averaged Navier‒Stokes equation are 
expressed as follows:
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where 𝑢𝑢𝑖𝑖 and 𝑢𝑢𝑗𝑗  are the time-averaged value of the velocity component, and the value range of 
subscript 𝑖𝑖 and 𝑗𝑗 is (1,2,3); 𝑃𝑃 is the time-averaged value of the pressure; 𝜌𝜌 is the fluid density; 
𝜇𝜇  is a hydrodynamic viscosity coefficient; −𝜌𝜌𝑢𝑢𝑖𝑖′𝑢𝑢𝑗𝑗′  is the Reynolds stress; and 𝑆𝑆𝑖𝑖  is the 
generalised source term of the momentum equation.  

The standard 𝑘𝑘 − 𝜀𝜀 model is used as the turbulence model in this paper. The equation of the 
turbulent kinetic energy 𝑘𝑘 and turbulent dissipation rate 𝜀𝜀 are expressed as follows: 
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where 𝐺𝐺𝑘𝑘  is the generation term of turbulent kinetic energy 𝑘𝑘  caused by the average velocity 
gradient; 𝜇𝜇𝑡𝑡 = 𝜌𝜌𝐶𝐶𝜇𝜇

𝑘𝑘2
𝜀𝜀

; 𝐶𝐶𝜇𝜇=0.09; 𝜎𝜎𝑘𝑘=1.0; and 𝜎𝜎𝜀𝜀=1.3. 
The volume of fluids (VOF) method [23‒24] was utilised to capture the free liquid surface. The 

phase distribution and position at the interface are described by the field of phase volume fraction 𝑎𝑎𝑗𝑗, 
where the phase 𝑗𝑗 is defined as follows: 

 𝑎𝑎𝑗𝑗 = 𝑉𝑉𝑖𝑖
𝑉𝑉  （5） 

where 𝑉𝑉𝑖𝑖 is the volume of the phase 𝑗𝑗 in the mesh cell and 𝑉𝑉 is the volume of the mesh cell. 
The sum of the volume fractions of all the phases in a mesh cell must be 1; that is,∑ 𝑎𝑎𝑖𝑖 = 1𝑁𝑁

𝑖𝑖=1 , 
where 𝑁𝑁  is the total number of phases. According to the value of the volume fraction, it can 
distinguish whether there are different phases or fluids in the mesh cell; that is, when 𝑎𝑎𝑖𝑖=0, the mesh 
cell has no phase 𝑖𝑖 at all. When 𝑎𝑎𝑖𝑖=1, this mesh cell is completely filled by the phase 𝑖𝑖; 0< 𝑎𝑎𝑖𝑖 <1, 
where the value between the two limits indicates the existence of an interface between the phases. 

 
COMPUTATIONAL MODEL 

 
The ship type studied in this paper was inspired by a catamaran with a step [16]. Using a step on 

the hull could separate the water, create a dry section from step to transom, and reduce the resistance 
at high speed [25‒26]. The stepped hull is viewed as two regular hulls following each other closely, 
so that the catamaran turns into a quadramaran. A high-speed V-shaped catamaran (Fig. 1b) is 
selected to separate at midship, the first demihulls are used as the bow demihulls of the quadramaran, 
and the second demihulls are replaced by other V-shaped hulls used as the stern demihulls of the 
quadramaran, where the centre lines of the bow and stern demihulls are aligned. Before the ship type 
in this paper was proposed, a hull form optimisation study was carried out, and it was found that a 
large deadrise angle at the bow demihull was beneficial to improve the wave interference and reduce 
the total resistance. So that the bow and stern demihulls are of different V-shaped hull forms, the 
bow hull has leaner lines, larger deadrise angles, and smaller waterline entrance angles than those 
of the stern hull.  
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The ship type studied in this paper was inspired by a catamaran with a step [16]. Using a step on 

the hull could separate the water, create a dry section from step to transom, and reduce the resistance 
at high speed [25‒26]. The stepped hull is viewed as two regular hulls following each other closely, 
so that the catamaran turns into a quadramaran. A high-speed V-shaped catamaran (Fig. 1b) is 
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in this paper was proposed, a hull form optimisation study was carried out, and it was found that a 
large deadrise angle at the bow demihull was beneficial to improve the wave interference and reduce 
the total resistance. So that the bow and stern demihulls are of different V-shaped hull forms, the 
bow hull has leaner lines, larger deadrise angles, and smaller waterline entrance angles than those 
of the stern hull.  
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where 𝑉𝑉𝑖𝑖 is the volume of the phase 𝑗𝑗 in the mesh cell and 𝑉𝑉 is the volume of the mesh cell. 
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where 𝑁𝑁  is the total number of phases. According to the value of the volume fraction, it can 
distinguish whether there are different phases or fluids in the mesh cell; that is, when 𝑎𝑎𝑖𝑖=0, the mesh 
cell has no phase 𝑖𝑖 at all. When 𝑎𝑎𝑖𝑖=1, this mesh cell is completely filled by the phase 𝑖𝑖; 0< 𝑎𝑎𝑖𝑖 <1, 
where the value between the two limits indicates the existence of an interface between the phases. 
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The ship type studied in this paper was inspired by a catamaran with a step [16]. Using a step on 

the hull could separate the water, create a dry section from step to transom, and reduce the resistance 
at high speed [25‒26]. The stepped hull is viewed as two regular hulls following each other closely, 
so that the catamaran turns into a quadramaran. A high-speed V-shaped catamaran (Fig. 1b) is 
selected to separate at midship, the first demihulls are used as the bow demihulls of the quadramaran, 
and the second demihulls are replaced by other V-shaped hulls used as the stern demihulls of the 
quadramaran, where the centre lines of the bow and stern demihulls are aligned. Before the ship type 
in this paper was proposed, a hull form optimisation study was carried out, and it was found that a 
large deadrise angle at the bow demihull was beneficial to improve the wave interference and reduce 
the total resistance. So that the bow and stern demihulls are of different V-shaped hull forms, the 
bow hull has leaner lines, larger deadrise angles, and smaller waterline entrance angles than those 
of the stern hull.  

The volume of fluids (VOF) method [23‒24] was utilised 
to capture the free liquid surface. The phase distribution and 
position at the interface are described by the field of phase 
volume fraction aj, where the phase j is defined as follows:

 
GOVERNING EQUATIONS AND THEORIES 
 

Considering the influence of turbulent pulsation, the governing equations of fluids are commonly 
based on the time-averaged method [21‒22]. The continuous equation and the Reynolds-Averaged 
Navier‒Stokes equation are expressed as follows: 
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where 𝑢𝑢𝑖𝑖 and 𝑢𝑢𝑗𝑗  are the time-averaged value of the velocity component, and the value range of 
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generalised source term of the momentum equation.  

The standard 𝑘𝑘 − 𝜀𝜀 model is used as the turbulence model in this paper. The equation of the 
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phase distribution and position at the interface are described by the field of phase volume fraction 𝑎𝑎𝑗𝑗, 
where the phase 𝑗𝑗 is defined as follows: 
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where 𝑉𝑉𝑖𝑖 is the volume of the phase 𝑗𝑗 in the mesh cell and 𝑉𝑉 is the volume of the mesh cell. 
The sum of the volume fractions of all the phases in a mesh cell must be 1; that is,∑ 𝑎𝑎𝑖𝑖 = 1𝑁𝑁

𝑖𝑖=1 , 
where 𝑁𝑁  is the total number of phases. According to the value of the volume fraction, it can 
distinguish whether there are different phases or fluids in the mesh cell; that is, when 𝑎𝑎𝑖𝑖=0, the mesh 
cell has no phase 𝑖𝑖 at all. When 𝑎𝑎𝑖𝑖=1, this mesh cell is completely filled by the phase 𝑖𝑖; 0< 𝑎𝑎𝑖𝑖 <1, 
where the value between the two limits indicates the existence of an interface between the phases. 
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the hull could separate the water, create a dry section from step to transom, and reduce the resistance 
at high speed [25‒26]. The stepped hull is viewed as two regular hulls following each other closely, 
so that the catamaran turns into a quadramaran. A high-speed V-shaped catamaran (Fig. 1b) is 
selected to separate at midship, the first demihulls are used as the bow demihulls of the quadramaran, 
and the second demihulls are replaced by other V-shaped hulls used as the stern demihulls of the 
quadramaran, where the centre lines of the bow and stern demihulls are aligned. Before the ship type 
in this paper was proposed, a hull form optimisation study was carried out, and it was found that a 
large deadrise angle at the bow demihull was beneficial to improve the wave interference and reduce 
the total resistance. So that the bow and stern demihulls are of different V-shaped hull forms, the 
bow hull has leaner lines, larger deadrise angles, and smaller waterline entrance angles than those 
of the stern hull.  
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where 𝑁𝑁  is the total number of phases. According to the value of the volume fraction, it can 
distinguish whether there are different phases or fluids in the mesh cell; that is, when 𝑎𝑎𝑖𝑖=0, the mesh 
cell has no phase 𝑖𝑖 at all. When 𝑎𝑎𝑖𝑖=1, this mesh cell is completely filled by the phase 𝑖𝑖; 0< 𝑎𝑎𝑖𝑖 <1, 
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the hull could separate the water, create a dry section from step to transom, and reduce the resistance 
at high speed [25‒26]. The stepped hull is viewed as two regular hulls following each other closely, 
so that the catamaran turns into a quadramaran. A high-speed V-shaped catamaran (Fig. 1b) is 
selected to separate at midship, the first demihulls are used as the bow demihulls of the quadramaran, 
and the second demihulls are replaced by other V-shaped hulls used as the stern demihulls of the 
quadramaran, where the centre lines of the bow and stern demihulls are aligned. Before the ship type 
in this paper was proposed, a hull form optimisation study was carried out, and it was found that a 
large deadrise angle at the bow demihull was beneficial to improve the wave interference and reduce 
the total resistance. So that the bow and stern demihulls are of different V-shaped hull forms, the 
bow hull has leaner lines, larger deadrise angles, and smaller waterline entrance angles than those 
of the stern hull.  

, where N is the total number 
of phases. According to the value of the volume fraction, it 
can distinguish whether there are different phases or fluids 
in the mesh cell; that is, when ai=0, the mesh cell has no 
phase i at all. When ai=1, this mesh cell is completely filled by 
the phase i; 0< ai <1, where the value between the two limits 
indicates the existence of an interface between the phases.

COMPUTATIONAL MODEL

The ship type studied in this paper was inspired by 
a catamaran with a step [16]. Using a step on the hull could 
separate the water, create a dry section from step to transom, 
and reduce the resistance at high speed [25‒26]. The stepped 
hull is viewed as two regular hulls following each other closely, 
so that the catamaran turns into a quadramaran. A high-
speed V-shaped catamaran (Fig. 1b) is selected to separate at 
midship, the first demihulls are used as the bow demihulls 
of the quadramaran, and the second demihulls are replaced 
by other V-shaped hulls used as the stern demihulls of the 
quadramaran, where the centre lines of the bow and stern 
demihulls are aligned. Before the ship type in this paper was 
proposed, a hull form optimisation study was carried out, and 
it was found that a large deadrise angle at the bow demihull 
was beneficial to improve the wave interference and reduce 
the total resistance. So that the bow and stern demihulls are 
of different V-shaped hull forms, the bow hull has leaner 
lines, larger deadrise angles, and smaller waterline entrance 
angles than those of the stern hull. 

A full-scale model has been chosen as the study objective, 
and the main parameters of the catamaran and quadramaran 
in full scale are listed in Table 1. They have the same 
displacement and same waterline length, and the geometry 
models are established as shown in Fig. 1. 
Tab. 1 The main parameters of the quadramaran and catamaran

High-speed quadramaran High-speed catamaran

Parameters Value Parameters Value

Length overall of bow 
demihull LbOA (m) 11.76

Length overall of 
demihull LOA (m) 22.5

Length overall of stern 
demihull LsOA (m) 12.32

Waterline length of bow 
demihull Lb (m) 11.00

Waterline length of 
demihull L (m) 21.72

Waterline length of stern 
demihull Ls (m) 10.72

Moulded breadth of bow 
demihull Bb (m) 3.92

Moulded breadth of 
demihull B (m) 3.38

Moulded breadth of stern 
demihull Bs (m) 4.1

Deadrise angle in the 
midship of bow demihull 

βb (°)
40.9

Deadrise angle in the 
midship of demihull β (°) 27.3

Deadrise angle in the 
midship of stern demihull 

βs (°)
18.9
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High-speed quadramaran High-speed catamaran

Parameters Value Parameters Value

Transverse spacing of the 
centreline of demihulls 

Kc (m)
5.55

Transverse spacing of the 
centreline of demihulls 

Kc (m)
5.2

Longitudinal spacing of 
demihulls Kl (m) 0.05 Longitudinal spacing of 

demihulls Kl (m) /

Length overall of 
quadramaran LOA (m) 24.13 Length overall of 

catamaran LOA (m) 22.5

Breadth overall of 
quadramaran BOA (m) 9.65 Breadth overall of 

catamaran BOA (m) 8.44

Moulded depth D (m) 2.4 Moulded depth D (m) 3.5

Draft T (m) 1.13 Draft T (m) 1.2

Displacement of bow 
demihulls Δb (t)

27 Displacement of bow 
demihulls Δb (t)

/

Displacement of stern 
demihulls Δs (t)

43 Displacement of stern 
demihulls Δs (t)

/

Total displacement of 
quadramaran Δ (t) 70 Total displacement of 

catamaran Δ (t) 70

(a) quadramaran (b) catamaran

Fig. 1. The geometry models

NUMERICAL SCHEME

Boundary conditions
The computational domain is extended 1.5 L to the front of 

the bow, 3 L to the rear of the stern, L to the side, L above the 
free surface, and 1.5 L below the free surface. The boundary 
conditions of the inlet, top, and bottom of the computational 
domain are set as the velocity inlet, the outlet is set as the 
pressure outlet, both sides are set as the symmetry plane, and 
the hull surface is set as a no-slip wall surface.
Calculation setup

The implicit unsteady state is selected as the time model, 
the material is selected as Euler multiphase flow, the motion 
of the hull is set as six degrees of freedom rigid body motion, 
the VOF wave is set as calm water, the time step is set to 0.001 
s, and the iteration step is 10 steps. 

The studied speed ranges between 3.6 m/s and 24.18 m/s, 
because the total waterline length of the quadramaran, 
that is, the sum of the bow and stern demihulls’ waterline 
length, is the same as that of the catamaran, so that they have 

the same length Froude 
number, represented by 
the symbol Fr. Besides, 
the symbols Frb and Frs 
represent the length 
Froude number of  the 
bow and stern demihull, 
respectively. Table 2 shows 
the corresponding speeds 
of  the computational 
model.

Tab. 2 Corresponding speeds of computational model

Speed V (m/s) Speed V (kn)
Length Froude 

number of entire 
hull Fr

Volume Froude 
number of entire hull 

Fr∇ 

Length Froude 
number of bow 

demihull Frb

Length Froude 
number of stern 

demihull Frs

3.60 7 0.25 0.41 0.35 0.35

5.14 10 0.35 0.57 0.50 0.50

6.69 13 0.46 0.81 0.64 0.65

7.72 15 0.53 1.06 0.74 0.75

8.74 17 0.60 1.22 0.84 0.85

10.29 20 0.71 1.38 0.99 1.00

11.83 23 0.81 1.63 1.14 1.15

12.86 25 0.88 1.87 1.24 1.25

13.89 27 0.95 2.03 1.34 1.36

15.43 30 1.06 2.19 1.49 1.51

16.98 33 1.17 2.44 1.64 1.66

18.00 35 1.23 2.69 1.73 1.76

19.03 37 1.30 2.84 1.83 1.86

20.58 40 1.41 3.01 1.98 2.01

22.12 43 1.52 3.25 2.13 2.16

23.15 45 1.59 3.49 2.23 2.26

24.18 47 1.66 3.66 2.33 2.36
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Grid convergence study
To boost confidence in the CFD computation results, a grid 

convergence study is needed before systematic computations 
according to ITTC recommended procedures [27‒28]. Three 
sets of grids corresponding to fine, medium, and coarse grids 
are established, respectively. The grid refinement ratio is  

18.00 35 1.23 2.69 1.73 1.76 
19.03 37 1.30 2.84 1.83 1.86 
20.58 40 1.41 3.01 1.98 2.01 
22.12 43 1.52 3.25 2.13 2.16 
23.15 45 1.59 3.49 2.23 2.26 
24.18 47 1.66 3.66 2.33 2.36 
 

Grid convergence study 
 

To boost confidence in the CFD computation results, a grid convergence study is needed before 
systematic computations according to ITTC recommended procedures [27‒28]. Three sets of grids 
corresponding to fine, medium, and coarse grids are established, respectively. The grid refinement 
ratio is 𝑟𝑟𝐺𝐺 = √2. Taking the quadramaran speed 20.58 m/s as an example, the grids from the finest 
to the coarsest grids are illustrated in Fig. 2, and the grid cell numbers are given in Table 3. The 
calculated results using different grid strategies are shown in Table 4. 
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Fig. 2. Grids from finest to coarsest 

 
Table 3 Number of cells for three grids 

 

Grid scheme (a) fine grid 𝑆𝑆1 (b) medium grid 𝑆𝑆2 (c) coarse grid 𝑆𝑆3 
Number of grids 38775148 16133326 6091183 

 
Table 4 Calculated results using different grid strategies 
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Stern total resistance (kN) 39.64 41.26 43.61 

Total resistance (kN) 83.08 85.46 88.77 
Dynamic trim angle (°) 1.397 1.427 1.469 

Rise-up (m) 0.418 0.419 0.421 
 

Table 5 Grid uncertainty analysis 
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Dynamic 
trim angle Rise-up 

Convergence ratio 𝑅𝑅𝐺𝐺  0.787 0.686 0.718 0.697 0.451 
Convergence condition Monotonic Monotonic Monotonic Monotonic Monotonic 

Accuracy 𝑃𝑃𝐺𝐺 0.693 1.086 0.957 1.042 2.298 
Grid error 𝛿𝛿𝑅𝑅𝐸𝐸𝐺𝐺∗  2.867 3.529 6.042 0.068 0.0007 

Correction factor 𝐶𝐶𝐺𝐺 0.271 0.457 0.393 0.435 1.218 
|1 − 𝐶𝐶𝐺𝐺| 0.729 0.543 0.607 0.565 0.218 

Uncertainty 𝑈𝑈𝐺𝐺 7.045 7.363 13.376 0.145 0.0099 
Uncertainty 𝑈𝑈𝐺𝐺 (%𝑆𝑆𝐺𝐺) 16.23% 18.57% 16.10% 10.34% 0.24% 
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Tab. 3 Number of cells for three grids

Grid scheme (a) fine grid S1 (b) medium grid S2 (c) coarse grid S3

Number of grids 38775148 16133326 6091183

Tab. 4 Calculated results using different grid strategies

Grid scheme (a) fine grid S1 (b) medium grid S2 (c) coarse grid S3

Bow total resistance (kN) 43.40 44.18 45.17

Stern total resistance (kN) 39.64 41.26 43.61

Total resistance (kN) 83.08 85.46 88.77

Dynamic trim angle (°) 1.397 1.427 1.469

Rise-up (m) 0.418 0.419 0.421

Tab. 5 Grid uncertainty analysis

Grid scheme Bow total 
resistance

Stern total 
resistance Total resistance Dynamic trim 

angle Rise-up

Convergence ratio RG 0.787 0.686 0.718 0.697 0.451

Convergence condition Monotonic Monotonic Monotonic Monotonic Monotonic

Accuracy PG 0.693 1.086 0.957 1.042 2.298

Grid error δ*
REG

2.867 3.529 6.042 0.068 0.0007

Correction factor CG 0.271 0.457 0.393 0.435 1.218

|1 − CG| 0.729 0.543 0.607 0.565 0.218

Uncertainty UG 7.045 7.363 13.376 0.145 0.0099

Uncertainty UG(% SG) 16.23% 18.57% 16.10% 10.34% 0.24%

Correction error δ*
G 0.778 1.613 2.375 0.0295 0.0008

Correction error δ*
G(% SG) 1.83% 4.24% 2.94% 2.16% 0.20%

Correction uncertainty UCG
2.089 1.917 3.667 0.038 0.0001

Correction uncertainty UGC
(% SG) 4.90% 5.04% 4.54% 2.80% 0.04%
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The differences in the results between the different grid 
schemes are defined as follows:

Correction error 𝛿𝛿𝐺𝐺∗  0.778 1.613 2.375 0.0295 0.0008 
Correction error 𝛿𝛿𝐺𝐺∗  (%𝑆𝑆𝐶𝐶) 1.83% 4.24% 2.94% 2.16% 0.20% 

Correction uncertainty 𝑈𝑈𝐺𝐺𝐶𝐶  2.089 1.917 3.667 0.038 0.0001 
Correction uncertainty 

𝑈𝑈𝐺𝐺𝐶𝐶(%𝑆𝑆𝐶𝐶) 4.90% 5.04% 4.54% 2.80% 0.04% 

 
The differences in the results between the different grid schemes are defined as follows: 
 {𝜀𝜀21 = 𝑆𝑆2 − 𝑆𝑆1

𝜀𝜀32 = 𝑆𝑆3 − 𝑆𝑆2
 （1） 

The convergence ratio 𝑅𝑅𝐺𝐺  is defined as 
 𝑅𝑅𝐺𝐺 = 𝜀𝜀21

𝜀𝜀32 （2） 
According to [27], three convergence conditions are possible: 
(1) Monotonic convergence: 0 < 𝑅𝑅𝐺𝐺 < 1; 
(2) Oscillatory convergence: 𝑅𝑅𝐺𝐺 < 0; 
(3) Divergence: 𝑅𝑅𝐺𝐺 > 1. 
The results of the convergence ratio 𝑅𝑅𝐺𝐺  shown in Table 5 are less than 1, so the grid convergence 

is monotonic. 
For monotonous convergence, the Generalized Richardson extrapolation is used to estimate the 

grid error 𝛿𝛿𝑅𝑅𝐸𝐸𝐺𝐺∗ . 

 𝛿𝛿𝑅𝑅𝐸𝐸𝐺𝐺∗ = 𝜀𝜀21
𝑟𝑟𝐺𝐺
𝑃𝑃𝐺𝐺−1 （3） 

 
The order of accuracy 𝑃𝑃𝐺𝐺  is estimated as 

 𝑃𝑃𝐺𝐺 = 𝐼𝐼𝐼𝐼(𝜀𝜀32 𝜀𝜀21⁄ )
𝐼𝐼𝐼𝐼(𝑟𝑟𝐺𝐺)

 （4） 

The correction factor 𝐶𝐶𝐺𝐺 is defined as 

 𝐶𝐶𝐺𝐺 = 𝑟𝑟𝐺𝐺
𝑃𝑃𝐺𝐺−1

𝑟𝑟𝐺𝐺
𝑃𝑃𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒−1

 （5） 

where 𝑃𝑃𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒 = 2 was used according to [28]. 
For 𝐶𝐶𝐺𝐺 considered as sufficiently less than or greater than 1 and lacking confidence, the error 

𝛿𝛿𝐺𝐺 is not estimated, and the uncertainty 𝑈𝑈𝐺𝐺 is estimated as follows: 

 𝑈𝑈𝐺𝐺 = {
[9.6(1 − 𝐶𝐶𝐺𝐺)2 + 1.1]|𝛿𝛿𝑅𝑅𝐸𝐸𝐺𝐺∗ | 

[2|1 − 𝐶𝐶𝐺𝐺| + 1]|𝛿𝛿𝑅𝑅𝐸𝐸𝐺𝐺∗ |
  |1 − 𝐶𝐶𝐺𝐺| < 0.125 

|1 − 𝐶𝐶𝐺𝐺| ≥ 0.125  （6） 

For 𝐶𝐶𝐺𝐺 considered close to 1 and having confidence, the correction error 𝛿𝛿𝐺𝐺∗  and the correction 
uncertainty 𝑈𝑈𝐺𝐺𝐶𝐶 are estimated as follows: 

 𝛿𝛿𝐺𝐺∗ = 𝐶𝐶𝐺𝐺𝛿𝛿𝑅𝑅𝐸𝐸𝐺𝐺∗  （7） 

 𝑈𝑈𝐺𝐺𝐶𝐶 = {
[2.4(1 − 𝐶𝐶𝐺𝐺)2 + 0.1]|𝛿𝛿𝑅𝑅𝐸𝐸𝐺𝐺∗ | 

[|1 − 𝐶𝐶𝐺𝐺|]|𝛿𝛿𝑅𝑅𝐸𝐸𝐺𝐺∗ |
  |1 − 𝐶𝐶𝐺𝐺| < 0.25 

|1 − 𝐶𝐶𝐺𝐺| ≥ 0.25  （8） 

The correction simulation result 𝑆𝑆𝐶𝐶 is defined as 
 𝑆𝑆𝐶𝐶 = 𝑆𝑆𝐺𝐺 − 𝛿𝛿𝐺𝐺∗  （9） 

where 𝑆𝑆𝐺𝐺 is the result of numerical simulation under the finest grid 𝑆𝑆1. 
Table 5 shows the results of the grid uncertainty analysis. 𝛿𝛿𝐺𝐺∗  and 𝑈𝑈𝐺𝐺𝐶𝐶 are relatively small, so 

the level of verification is relatively small, <6%. This indicates that the errors in the results caused 
by grid discretisation are very small. Thus, as a trade-off between accuracy and efficiency, the grid 
density 𝑆𝑆2 is selected for calculation. 
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For 𝐶𝐶𝐺𝐺 considered as sufficiently less than or greater than 1 and lacking confidence, the error 

𝛿𝛿𝐺𝐺 is not estimated, and the uncertainty 𝑈𝑈𝐺𝐺 is estimated as follows: 
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  |1 − 𝐶𝐶𝐺𝐺| < 0.125 

|1 − 𝐶𝐶𝐺𝐺| ≥ 0.125  （6） 

For 𝐶𝐶𝐺𝐺 considered close to 1 and having confidence, the correction error 𝛿𝛿𝐺𝐺∗  and the correction 
uncertainty 𝑈𝑈𝐺𝐺𝐶𝐶 are estimated as follows: 
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where 𝑆𝑆𝐺𝐺 is the result of numerical simulation under the finest grid 𝑆𝑆1. 
Table 5 shows the results of the grid uncertainty analysis. 𝛿𝛿𝐺𝐺∗  and 𝑈𝑈𝐺𝐺𝐶𝐶 are relatively small, so 

the level of verification is relatively small, <6%. This indicates that the errors in the results caused 
by grid discretisation are very small. Thus, as a trade-off between accuracy and efficiency, the grid 
density 𝑆𝑆2 is selected for calculation. 
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where SG is the result of numerical simulation under the 
finest grid S1.

Table 5 shows the results of the grid uncertainty analysis. 
δ*

G  and UGC
 are relatively small, so the level of verification is 

relatively small, < 6%. This indicates that the errors in the 
results caused by grid discretisation are very small. Thus, as 
a trade-off between accuracy and efficiency, the grid density  
S2 is selected for calculation.

Mesh generation
The overset mesh method is applied to the computational 

mesh. Mesh encryption is performed on the free liquid surface 
and the area around the hull, respectively, and boundary layer 
meshes are set around the hull, where 6 boundary layers are 
created with a growth rate of 1.1. The specific computational 
meshes are shown in Fig. 3. The y+ distribution obtained 
for the speed of 20.58 m/s from the full-scale simulation 
is shown in Fig. 4, where the value for y+ around the hull is 
about 100‒1500.

(a) quadramaran (b) catamaran

Fig. 3. Computational mesh
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(a) quadramaran (b) catamaran

Fig. 4. The distribution of y+ for the speed of 20.58 m/s

Validation of the numerical method
Considering the absence of publicly available ship model 

test results, a V-shaped high-speed boat from the M1 ship 
type proposed by Parviz Ghadimi [26] is selected to carry out 
a comparative study to assess the accuracy of the numerical 
methods. Table 6 lists the principal dimensions of hull M1 
while Fig. 5 illustrates the geometry of the model.

The results are compared with experimental and CFD 
data for the total resistance, dynamic trim angle and rise-up, 
as given in Figs. 6‒8. It is seen that the numerical results of 
the total resistance and dynamic trim angle agree well with 
the experimental results. The maximum deviation of the total 
resistance is 10.9% at 7 m/s, and the maximum deviation 
of the dynamic trim angle is 18.76% at 7 m/s. Although the 

overall deviation of the rise-up is large, the general trend is 
consistent with the experimental value. It can be seen that 
the CFD numerical calculation method used in this paper is 
suitable and has reliable calculation accuracy.
Tab. 6 The principal dimensions of hull 

Parameters Value

Length overall LOA (m) 2.64

Maximum beam B (m) 0.551

Displacement Δ (kg) 86

Longitudinal distance of gravity centre LCG (m) 0.791

Vertical distance of gravity centre VCG (m) 0.185

Speed V (m/s) 1‒7

Fig. 5. The geometry of the model 
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Fig. 6. Comparison of total resistance

Fig. 7. Comparison of dynamic trim angle

Fig. 8. Comparison of rise-up

CALCULATION RESULTS AND ANALYSIS

For high-speed ships, resistance can be divided into two 
parts: frictional resistance and residual resistance [29]. The 
calculation formula of the total resistance is expressed as 
follows.

Parameters Value 
Length overall 𝐿𝐿𝑂𝑂𝑂𝑂 (m) 2.64 
Maximum beam 𝐵𝐵 (m) 0.551 
Displacement ∆ (kg) 86 

Longitudinal distance of gravity centre 𝐿𝐿𝐶𝐶𝐶𝐶 (m) 0.791 
Vertical distance of gravity centre 𝑉𝑉𝐶𝐶𝐶𝐶 (m) 0.185 

Speed 𝑉𝑉 (m/s) 1‒7 
 

 

 

 
Fig. 5. The geometry of the model 𝑀𝑀1 
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CALCULATION RESULTS AND ANALYSIS 

 
For high-speed ships, resistance can be divided into two parts: frictional resistance and residual 

resistance [29]. The calculation formula of the total resistance is expressed as follows. 
 𝑅𝑅𝑡𝑡 = 𝐶𝐶𝑡𝑡

1
2 𝜌𝜌𝜌𝜌𝑉𝑉

2 （10） 
where 𝐶𝐶𝑡𝑡  is the total resistance coefficient, 𝐶𝐶𝑡𝑡 = 𝐶𝐶𝑓𝑓 + 𝐶𝐶𝑟𝑟 + ∆𝐶𝐶𝐹𝐹 ; 𝐶𝐶𝑓𝑓  is the frictional resistance 
coefficient; 𝐶𝐶𝑟𝑟  is the residual resistance coefficient; ∆𝐶𝐶𝐹𝐹  is the correction coefficient, which is 
0.0004; 𝜌𝜌 is the density of seawater, 𝑘𝑘𝑘𝑘 𝑚𝑚3⁄ ; 𝑆𝑆 is the wet surface area of the hull, 𝑚𝑚2; 𝑉𝑉 is the 
hull speed, 𝑚𝑚 𝑠𝑠⁄ . 

The frictional resistance coefficient 𝐶𝐶𝑓𝑓 is obtained based on the equivalent plank assumption, 
which was determined by the International Towing Tank Conference (ITTC) [30], that is: 

 𝐶𝐶𝑓𝑓 = 0.075
(lg𝑅𝑅𝑅𝑅−2)2 （11）

 where 𝑅𝑅𝑅𝑅 is the Reynolds number. 

(10)

where Ct is the total resistance coefficient, Ct = Cf + Cr+ ΔCF; 
Cf is the frictional resistance coefficient; Cr is the residual 
resistance coefficient; ΔCF is the correction coefficient, which 
is 0.0004; ρ is the density of seawater, kg/m3; S is the wet 
surface area of the hull, m2; V is the hull speed, m/s⁄. 

The frictional resistance coefficient CF is obtained based 
on the equivalent plank assumption, which was determined 
by the International Towing Tank Conference (ITTC) [30], 
that is:

Parameters Value 
Length overall 𝐿𝐿𝑂𝑂𝑂𝑂 (m) 2.64 
Maximum beam 𝐵𝐵 (m) 0.551 
Displacement ∆ (kg) 86 

Longitudinal distance of gravity centre 𝐿𝐿𝐶𝐶𝐶𝐶 (m) 0.791 
Vertical distance of gravity centre 𝑉𝑉𝐶𝐶𝐶𝐶 (m) 0.185 

Speed 𝑉𝑉 (m/s) 1‒7 
 

 

 

 
Fig. 5. The geometry of the model 𝑀𝑀1 

 

   
Fig. 6. Comparison of total resistance Fig. 7. Comparison of dynamic trim angle Fig. 8. Comparison of rise-up 

 
CALCULATION RESULTS AND ANALYSIS 

 
For high-speed ships, resistance can be divided into two parts: frictional resistance and residual 

resistance [29]. The calculation formula of the total resistance is expressed as follows. 
 𝑅𝑅𝑡𝑡 = 𝐶𝐶𝑡𝑡

1
2 𝜌𝜌𝜌𝜌𝑉𝑉

2 （10） 
where 𝐶𝐶𝑡𝑡  is the total resistance coefficient, 𝐶𝐶𝑡𝑡 = 𝐶𝐶𝑓𝑓 + 𝐶𝐶𝑟𝑟 + ∆𝐶𝐶𝐹𝐹 ; 𝐶𝐶𝑓𝑓  is the frictional resistance 
coefficient; 𝐶𝐶𝑟𝑟  is the residual resistance coefficient; ∆𝐶𝐶𝐹𝐹  is the correction coefficient, which is 
0.0004; 𝜌𝜌 is the density of seawater, 𝑘𝑘𝑘𝑘 𝑚𝑚3⁄ ; 𝑆𝑆 is the wet surface area of the hull, 𝑚𝑚2; 𝑉𝑉 is the 
hull speed, 𝑚𝑚 𝑠𝑠⁄ . 

The frictional resistance coefficient 𝐶𝐶𝑓𝑓 is obtained based on the equivalent plank assumption, 
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(11)

where Re is the Reynolds number.

For high-speed ships, although the viscous pressure 
resistance accounts for a small proportion of the residual 
resistance, most of the residual resistance is composed of 
the wave-making resistance, so the characteristics of the 
wave-making resistance can be reflected by the residual 
resistance [31]. 

According to [32], when the length Froude number Fr < 0.4, 
the buoyancy force dominates relative to the hydrodynamic 
force effect, and vessels in this Froude number range are 
called displacement vessels; vessels with a length Froude 
number in the range of 0.4 − 0.5 < Fr < 1.0 −1.2 are called semi-
planing vessels, which means that high-speed submerged 
hull-supported vessels denote vessels in which the buoyancy 
force is not dominant; vessels with a length Froude number 
in the range of  Fr > 1.0 − 1.2 are called planing vessels, 
which means that the hydrodynamic force mainly carries 
the weight. However, there is no clear line of demarcation 
between planing and nonplaning conditions just by referring 
to the length Froude number, as individual circumstances 
alter cases.

In this paper, the calculation results were analysed by using 
non-dimensional parameters. The speed is represented by 
the length Froude number Fr, which is defined as  
and the resistance is represented by the resistance to weight 
ratio, which is defined as R ⁄Δ, where V is the hull speed, m/s  
L is the waterline length, m; g is the acceleration of gravity, 
with a value of 9.8 m⁄s2; R is the resistance value, N; and Δ is 
the hull weight, kg.

ANALYSIS OF RESISTANCE CHARACTERISTICS 
OF INTEGRATED HULL

Figs. 9‒13 show the comparison curves of the characteristics 
of the rise-up ζ, dynamic trim angle θ, frictional resistance 
Rf ⁄Δ , residual resistance Rr ⁄Δ and total resistance Rt ⁄Δ of 
the quadramaran and catamaran as a function of the length 
Froude number Fr, respectively.

From the curves of the quadramaran, it can be seen that at 
low speed (Fr < 0.53), the motion turns from the displacement 
regime into the semi-planing regime, the dynamic trim angle 
increases with the increase of , the bow rises and the stern 
descends, so the rise-up is negative. The frictional resistance, 
residual resistance, and total resistance increase constantly. 
Because the hydrodynamic force is not enough to support the 
hull in this regime, the dynamic trim angle keeps increasing 
and the hull keeps descending until reaching the Froude 
number of 0.53, when the curve of the rise-up shows its hump, 
and the hull begins to rise. The dynamic trim angle, the 
residual resistance, and the total resistance have a significant 
hump at the Froude number of 0.6. Above the hump speed, 
due to the hydrodynamic force effect, the dynamic trim 
angle, the residual resistance, and the total resistance begin 
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to decrease until reaching the Froude number of 1.06, when 
the motion enters the planing regime, the dynamic trim 
angle becomes relatively steady, and the rise-up continues 
to increase gradually due to the hydrodynamic force effect. 
So the residual resistance keeps decreasing, while, because of 
the rapid growth of frictional resistance, the total resistance 
curve becomes remarkably flat and shows no upward trend. 

Fig. 9 shows the comparison between the rise-up curves 
of the quadramaran and catamaran, where it can be seen 
that the two hulls have roughly the same change trend. 
Both hulls first descend and then rise, and both have a large 
hump at the Froude number of 0.53. However, because the 
quadramaran makes the flow separate from the middle 
and generates multiple planing surfaces leading to the 
hydrodynamic force being multiplied and greater, the rise-up 
value of the quadramaran is significantly higher than that 
of the catamaran. 

Fig. 10 presents the comparison between the dynamic 
trim angle curves of the quadramaran and catamaran. It can 
be seen that both hulls also have roughly the same change 
trend. The dynamic trim angle of the two hulls first increases 
and then decreases; the quadramaran shows the hump at 
the Froude number of 0.6, while the catamaran shows the 
hump at the Froude number of 0.53. Because the bow and 
stern demihulls of the quadramaran generate multiple 
planing surfaces, causing the hydrodynamic force to be 
decentralised rather than concentrated like the catamaran, 
the angle amplitude of the catamaran is greater than that of 
the quadramaran, which is the opposite of the curve of the 
rise-up due to the special ship type.

Fig. 11 illustrates that the frictional resistance curves 
of both hulls have similar change trends on account of the 
similar main scales of the hulls.

Fig. 12 shows the comparison between the residual 
resistance curves of the quadramaran and catamaran. At low 

speed (Fr < 0.53), the residual resistance of both hulls increases 
constantly with the growth of Fr. The catamaran shows the 
hump at the Froude number of 0.53, while the quadramaran 
shows the hump at the Froude number of 0.6. The complexity 
of the wave interference among the four demihulls leads to the 
quadramaran having a significant hump, the value of which is 
about 1.7 times that of the catamaran. Above the hump speed, 
the residual resistance of both hulls reduces until reaching 
the Froude number of 1.06. The adverse wave interference 
makes the residual resistance of the catamaran increase again, 
while the residual resistance of the quadramaran continues to 
decrease due to the increase of the rise-up and the occurrence 
of favourable wave interference.

Fig. 13 shows the comparison between the total resistance 
curves of the quadramaran and catamaran. At low speed 
(Fr < 0.53), the two hulls turn from the displacement regime 
into the semi-planing regime, and the total resistance of 
both hulls increases constantly with the growth of Fr. The 
catamaran shows the hump at the Froude number of 0.53, 
while the quadramaran shows the hump at the Froude 
number of 0.6. The complexity of the wave interference 
among the four demihulls leads to the quadramaran having 
a significant hump, the value of which is about 1.6 times that 
of the catamaran. Above the hump speed, the total resistance 
of the catamaran still increases gently, while the quadramaran 
begins to decrease, until reaching the Froude number of 1.06, 
when the two hulls enter the planing regime, and the total 
resistance of the catamaran increases steeply, while for the 
quadramaran it becomes flat. Above the Froude number of 
1.06, the quadramaran starts to have less total resistance 
than the catamaran, with a maximum resistance reduction 
of 40% at the Froude number of 1.66. This indicates that the 
quadramaran has a remarkable resistance advantage above 
the Froude number of 1.06 (at a service speed above 30 kn).

Fig. 9. Comparison of curves of rise-up Fig. 10. Comparison of curves of dynamic trim angle 
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Fig. 11. Comparison of curves of frictional resistance Fig. 12. Comparison of curves of residual resistance

Fig. 13. Comparison of curves of total resistance

ANALYSIS OF RESISTANCE CHARACTERISTICS OF 
DEMIHULLS

The resistance of the demihulls is monitored independently 
by decomposing from the quadramaran hull. Figs. 14‒19 
show the resistance calculation results of the bow and stern 
demihulls of the quadramaran, in which the lower corner 
labels b and s represent the bow and stern, respectively.

Figs. 14 and15 present the frictional resistance curves of 
the bow and stern demihulls. It can be seen that the trends of 
frictional resistance of the bow and stern demihulls change 
similarly, as both increase constantly with the increase of the 
Froude number, which reflects that the frictional resistance is 
directly proportional to the square of speed. The leaner hull 
form, leading to a smaller wetted surface, makes the bow 
demihulls have lower values of frictional resistance.

Figs. 16 and 17 show the residual resistance curves of the 
bow and stern demihulls. At low speed (V < 7.72 m/s), the 
residual resistance of both demihulls rises gradually with the 
growth of the Froude number. The bow demihulls show the 
hump at the Froude number of 0.74, while the stern demihulls 

show the hump at the Froude number of 0.85. The reason is 
that the stern demihulls are located in the flow field of the bow 
demihulls, so the complexity of the wave interference makes 
the stern have a significant hump, the value of which is about 
2 times that of the bow demihulls. Above the hump speed, 
as the hull rises, the residual resistance of both demihulls 
decreases with the increase of the Froude number.

Figs. 18 and 19 illustrate the total resistance curves of the 
bow and stern demihulls. At low speed (V < 7.72 m/s), the 
total resistance of both demihulls rises gradually with the 
growth of the Froude number. The bow demihulls show the 
hump at the Froude number of 0.74, while the stern demihulls 
show the hump at the Froude number of 0.85. The complexity 
of the wave interference makes the stern have a significant 
hump, the value of which is about 1.8 times that of the bow 
demihulls. Above the hump speed, the total resistance of the 
bow demihulls keeps increasing, while the total resistance 
of the stern demihulls begins to decrease until reaching the 
Froude number of 1.51, at which the hull enters planing mode 
and the curve becomes flat.
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Fig. 14. Frictional resistance curve of bow demihulls Fig. 15. Frictional resistance curve of stern demihulls

Fig. 16. Residual resistance curve of bow demihulls Fig. 17. Residual resistance curve of stern demihulls

Fig. 18. Total resistance curve of bow demihulls Fig. 19. Total resistance curve of stern demihulls

ANALYSIS OF WAVE-MAKING CHARACTERISTICS

Figs. 20 and 21 compare the contour and side view of 
the wave-making characteristics of the quadramaran and 
catamaran at different Froude numbers. It can be seen that, at 
low speed (Fr < 0.53), the two hulls turn from the displacement 
regime into the semi-planing regime. Both hulls descend 
and the dynamic trim angle increases. Transverse waves 
and divergent waves occur and reinforce each other, which 
makes the flow fields among the demihulls quite disorderly 
and adverse wave interference occurs. The flow in the stern 
region does not separate cleanly off the transom and therefore 
produces a large stern wake due to the sudden change in 
flow direction. Besides, the flows over the demihulls affect 
one another, which makes the flow asymmetric, so adverse 
viscous interference occurs. Having two more demihulls and 
a narrower separation than the catamaran results in complex 
flow fields, such that the quadramaran has worse wave and 
viscous interference and a higher wake, so that the total 

resistance of the quadramaran has a significant hump. Above 
the hump speed, as the hull rises and the dynamic trim angle 
decreases, the wave and viscous interference both improve, 
the flow fields gradually become orderly, the tail wake of the 
main hull extends backwards, the wake height decreases, and 
the flow under the transom is sufficient for separation. This 
results in cavitation being generated, which is equivalent to 
increasing the hull length and reducing the resistance, and 
the hydrodynamic force gradually dominates relative to the 
buoyancy force. As the hull of the quadramaran is separated 
in the middle by the bow and stern demihulls, the effect of 
the hydrodynamic force is greater than on the catamaran, 
so the total resistance of the quadramaran decreases in this 
regime, while for the catamaran it increases gently. Above the 
Froude number of 1.06, both hulls enter the planing regime. 
The wave pattern created behind the hulls is lengthened and 
narrower, and the length of cavitation becomes longer with 
the growth of the Froude number. The cavitation formed by 
the quadramaran is longer than that of the catamaran, and 
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the hydrodynamic force makes the quadramaran rise more, so 
the resistance curve is remarkably flat, while the wave-making 
at the bow of the catamaran rises, increasing its wave-making 
resistance, so the resistance curve is steep. In general, the 

quadramaran has worse wave-making characteristics at low 
speed but better characteristics at high speed compared to 
the catamaran. 

Fr = 0.35

Fr = 0.53

Fr = 0.6

Fr = 0.71
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Fr = 0.88

Fr = 1.06

Fr = 1.23

Fr = 1.41
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Fr = 1.59

Fr = 1.66

(a) quadramaran (b) catamaran

Fig. 20. Wave contour comparison of two hulls at different Fr

Fr = 0.35

Fr = 0.53

Fr = 0.6
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Fr = 0.71

Fr = 0.88

Fr = 1.06

Fr = 1.23

Fr = 1.41

Fr = 1.59

Fr = 1.66

Fig. 21. Wave side view comparison of two hulls at different Fr
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CONCLUSIONS

In this paper, a novel high-speed quadramaran is proposed, 
its resistance in calm water is calculated based on the CFD 
method, and the resistance characteristics are analysed. The 
following conclusions are obtained:

a) Due to the complex wave interference among the 
demihulls, the total resistance of the high-speed quadramaran 
has a significant hump at the Froude number of 0.6, the 
value of which is about 1.6 times that of the high-speed 
catamaran, for which the hump occurs at the Froude number 
of 0.53. Above the hump speed, the total resistance of the 
quadramaran does not increase but decreases, and the change 
trend of the total resistance tends to be flat when Fr = >1.06, 
which is different from that of the catamaran, where the total 
resistance curve was steep. The total resistance is significantly 
less than that of the catamaran, with a maximum reduction 
of 40% at the Froude number of 1.66, which indicates that 
the quadramaran has an obvious resistance advantage above 
the Froude number of 1.06 (at a service speed above 30 kn), 
and its high-speed performance is outstanding.

b) The frictional resistance curves of the quadramaran 
and catamaran have a similar change trend on account of the 
similar main scales of the two hulls. The residual resistance 
of the quadramaran first increases and then decreases with 
the increase of the Froude number. At low speed (Fr = < 0.53), 
the intricate wave interference of the quadramaran makes the 
hump value of residual resistance about 1.7 times that of the 
catamaran. However, at high speed (Fr = > 1.06), the residual 
resistance of the quadramaran is much less than that of the 
catamaran. This is mainly because, with the increase of the 
Froude number, the rise-up increases, the length of cavitation 
at the stern region is longer, and the wave interference is more 
favourable, which greatly reduces the wave-making resistance 
of the quadramaran.

c) The change trends of the frictional resistance on the 
bow and stern demihulls of the quadramaran are similar 
Both of them increase gradually as the Froude number rises, 
but the bow demihulls have lower values due to the smaller 
wetted surface. The change trends of the residual resistance 
on the bow and stern demihulls are also similar. Both of 
them increase first and then decrease with the growth of 
the Froude number, but the hump value of the stern is about 
2 times that of the bow demihulls due to the intricate wave 
interference. The total resistance characteristics of the bow 
and stern demihulls are different. The total resistance of the 
bow demihulls increases gradually with the increase of the 
Froude number and has a small hump at the Froude number of 
0.74. The total resistance of the stern demihulls first increases 
and then decreases with the increase of the Froude number 
and has a significant hump at the Froude number of 0.85 due 
to the complexity of the wave interference. Above the hump 
speed, as the hull rises and the wave interference changes 
from adverse to favourable, the total resistance of the stern 
demihulls decreases until reaching the Froude number of 
1.51, when it tends to be flat.
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