PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation of single grain cutting using SPH method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
So-called Engineered Grinding Tools (EGT) have been developed in order to satisfy the industry's demand for more efficient and cost-effective grinding tools, which differ from classic grinding tools by placing and brazing single abrasive grains in a predefined pattern onto the grinding tool body. Single grain cutting simulations form an important part towards an advanced understanding of the engineered grinding process. Cutting simulations with FE Methods encounter problems arising from large deformation and material separation. These can be overcome using meshless methods. In this work, a Smooth Particle Hydrodynamics (SPH) Method is used to model the single diamond grain cutting, which can be used as the basis process for physical simulation of the grinding process. As results the influence of the grain geometry, grain orientation and grain placement on the cutting forces, the burr generation and the chip removal rate are presented. It is shown that the cutting forces for a given grain geometry as well as the burr generation are heavily influenced by the orientation of the minor and the main cutting faces. Also cutting in material being work hardened by preceding grains, is simulated in order to be able to synthesize the grinding process from single grain cutting.
Rocznik
Strony
17--29
Opis fizyczny
Bibliogr. 27 poz., tab., rys.
Twórcy
autor
  • IWF - Institute of Machine Tools and Manufacturing, ETH Zuerich
autor
  • Empa - Swiss Federal Laboratories for Materials Science and Technology
autor
  • IWF - Institute of Machine Tools and Manufacturing, ETH Zuerich
Bibliografia
  • [1] ABEBE M., APPL F., 1988, Theoretical analysis of the basic mechanics of abrasive processes, Wear 126, 251-266.
  • [2] AURICH J.C., BRAUN O., WARNECKE G., 2003, Development of a superabrasive grinding wheel with defined grain structure using kinematic simulation, Cirp Annals-Manufacturing Technology, 52/1, 275-280.
  • [3] BRAUN O., WARNECKE G., AURICH J.C., 2005, Simulation-based development of a superabrasive grinding wheel with defined grain structure, in Transactions of the North American Manufacturing Research Institution of SME, 33, 351-358.
  • [4] BRINKSMEIER E., GIWERZEW A., 2003, Chip formation mechanisms in grinding at low speeds, Cirp Annals- Manufacturing Technology, 52/1, 253-258.
  • [5] BURKHARD G., 2001, Spanen mit definiert angeordneten Hartstoffkörnern, VDI Verlag Düsseldorf, 591.
  • [6] BURKHARD G., REHSTEINER F., 2002, High efficiency abrasive tool for honing, Cirp Annals-Manufacturing Technology, 51/1, 271-274.
  • [7] CALAMAZ M., LIMIDO J., NOUARI M., ESPINOSS C., COUPARD D., SALAUN M., GIROTA F., CHIERAGATTI R., 2008, Toward a better understanding of tool wear effect through a comparison between experiments and SPH numerical modelling of machining hard materials, International Journal of Refractory Metals and Hard Materials, 27, 3.
  • [8] DOMAN D., WARKENTIN A., BAUER R., 2009, Finite element modeling approaches in grinding, International Journal of Machine Tools and Manufacture, 49, 109-116.
  • [9] HALLQUIST J. O., 2009, LS-DYNA KEYWORD USER'S MANUALVolume I', LSTC, Version 971, Revision 4.
  • [10] HEINSTEIN M., SEGALMAN D., 1997, Simulation of Orthogonal Cutting with Smooth Particle Hydrodynamics, SANDIA REPORT SAND97–1961 , Sandia National Laboratories.
  • [11] JOHNSON G., COOK W., 1985, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Eng. Frac. Mech. 21, 33-48.
  • [12] LIMIDO J., ESPINOSA C., SALAUN M., LACOME J., 2006, A new approach of high speed cutting modelling:SPH method, J. Phys. IV France 134, 195-200.
  • [13] LIU G.R. 2009., Mesh Free Methods: Moving Beyond the Finite Element Method, CRC Press.
  • [14] LUCY L. B., 1977, A numerical approach to the testing of the fission hypothesis, The Astronomical Journal 82, 1019.
  • [15] MATSUO T., TOYOURA S., OSHIMA E., OHBUCHI Y., 1989, Effect of grain shape on cutting force in superabrasive single-grit tests, CIRP, 38/1, 323-326.
  • [16] MONAGHAN J., GINGOLD R., 1977, Smoothed Particle Hydrodynamics - Theory and application to nonspherical stars, Royal Astronomical Society 181, 543-574.
  • [17] OEZEL T., ZEREN E., 2007, Numerical modelling of meso-scale finish machining with finite edge radius tools, I nternational Journal of Machining and Machinability of Materials 2/3-4, 451-468.
  • [18] OHBUCHI Y., MATSUO T., 1991, Force and chip formation on single-grit orthogonal cutting with shaped CBN and diamond grains, CIRP, 40/1, 327-330.
  • [19] OPOZ T. T., CHEN X., 2010, Numerical Simulation of Single Grit Grinding, Proc. of the 16th International Conference on Automation, Computing.
  • [20] PARK H. W., LIANG S. Y., 2009, Force modeling of microscale grinding process incorporating thermal effects, The International Journal of Advanced Manufacturing Technology, 44, 476-486.
  • [21] PINTO F.W., VARGAS G.E., WEGENER K., 2008, Simulation for optimizing grain pattern on Engineered Grinding Tools, Cirp Annals-Manufacturing Technology, 57/1, 353-356.
  • [22] SUNG C.M., 1999, Brazed diamond grid: a revolutionary design for diamond saws, Diamond and Related Materials, 8/8-9, 1540-1543.
  • [23] SUNG J.C., SUNG M., 2009., The brazing of diamond, International Journal of Refractory Metals and Hard Materials, 27, 382-393.
  • [24] VILLUMSEN M. F., FAUERHOLDT T. G., 2008,. Simulation of Metal Cutting using Smooth Particle Hydrodynamics, LS-DYNA Anwenderforum.
  • [25] WEBER M., HOCHRAINER T., GUMBSCH P., AUTENRIETH H., DELONNOY L., SCHULZE V., LOUMLHE D., KOTSCHENREUTHER J., FLEISCHER J., 2007, Investigation of Size-effects in Machining with Geometrically Defined Cutting Edges, Machining Science and Technology,11, 447-473.
  • [26] WEBSTER J., TRICARD M., 2004, Innovations in abrasive products for precision grinding, Cirp Annals- Manufacturing Technology, 53/2, 597-617.
  • [27] WEGENER K., PINTO F.W., KUSTER F., VARGAS G.E., TRANSCHEL R., 2010, Simulation zur Optimierung von Schleifwerkzeugen mit definierter Kornanordnung, Diamond Business, 2, 28-33.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16f79ad2-2aa9-47b4-8ef2-0ed75487c32e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.