PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of iron oxide and local cement clay as potential fluoride adsorbents

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Health problem from fluoride contaminated water is more acute in rural and small urban communities. Defluoridation of low contaminated water by inexpensive adsorbents is a substantial practice worldwide. In the study, low-cost sorbents have been investigated as replacements for current costly methods of removing the excess fluoride from water below the certain concentration. The adsorption capacity of iron oxide and cement clay in fluoride removal was investigated by the batch method. The equilibrium time was attained in 3 h and 2 h for iron oxide and cement clay, respectively. Optimum adsorbent dosage was found to be 5 g/dm3. Initial fluoride concentrations for the adsorption studies were 1.24 and 12.2 mg/dm3. Fluoride adsorption isotherm fitted well the Freundlich isotherm with the coefficient of determination >0.99 for both adsorbents. The fluoride adsorption capacity of iron oxide was found higher than that of cement clay due to the high surface area and charge of iron oxide. How-ever both substances can reduce F– contamination below the acceptable limits of 1.5 mg/dm3 for less contaminated water.
Rocznik
Strony
109--118
Opis fizyczny
Bibliogr. 25 poz., tab., rys.
Twórcy
autor
  • Faculty of Engineering, Department of Environmental Engineering, Harran University, Osmanbey Campuse 63190, Şanlıurfa, Turkey
  • Faculty of Engineering, Department of Environmental Engineering, Harran University, Osmanbey Campuse 63190, Şanlıurfa, Turkey
Bibliografia
  • [1] ANSARI M., KAZEMIPOUR M., DEHGHANI M., KAZEMIPOUR M., The defluoridation of drinking water using multi-walled carbon nanotubes, J. Fluor. Chem., 2011, 132, 516.
  • [2] U.S. Department of Health & Human Services, http://www.hhs.gov/
  • [3] LUNGE S., BINIWALE R., LABHSETWAR N., RAYALU S.S., User perception study for performance evaluation of domestic defluoridation techniques for its application in rural areas, J. Hazard. Mat., 2011, 191, 325.
  • [4] FAN X., PARKER D.J., SMITH M.D., Adsorption kinetics of fluoride on low cost materials, Water Res., 2003, 37, 4929.
  • [5] RAMDANI A., TALEB S., BENGHALEM A., GHAFFOUR N., Removal of excess fluoride ions from Saharan brackish water by adsorption on natural materials, Desalination, 2010, 250, 408.
  • [6] MANDAL S., MAYADEVI S., Defluoridation of water using as-synthesized Zn/Al/Cl anionic clay adsor-bent: Equilibrium and regeneration studies, J. Hazard. Mat. 2009, 167, 873.
  • [7] GHORAI S., PANT K.K., Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina, Sep. Purif. Technol., 2005, 4, 265.
  • [8] MA Y., WANG S.G., FAN M., GONG W.X., GAO B.Y., Characteristics and defluoridation performance of granular activated carbons coated with manganese oxides, J. Hazard. Mat. 2009, 168, 1140.
  • [9] THAKRE D., RAYALU S., KAWADE R., MESHRAM S., SUBRT J., LABHSETWAR N., Magnesium incorporated bentonite clay for defluoridation of drinking water, J. Hazard. Mat., 2010, 180, 122.
  • [10] ATASOY A.D., ŞAHIN Ö.M., Adsorption of fluoride on the raw and modified cement clay, Clean, 2014, 42 (4), 415. [11] ZHUANG J.I., GUI-RUI E.Y., Effects of surface coatings on electrochemical properties and contaminant sorption of clay minerals, Chemosphere, 2002, 49, 619.
  • [12] KAU P.M.H., SMITH D.W., BINNING P., Fluoride retention by kaolin clay, J. Contam. Hydrol., 1997, 28, 267.
  • [13] CENGELOGLU Y., KIR E., ERSOZ M., Removal of fluoride from aqueous solution by using red mud, Sep. Purif. Technol., 2002, 28, 81.
  • [14] SUJANA M.G., PRADHAN H.K., ANAND S., Studies on sorption of some geomaterials for fluoride removal from aqueous solutions, J. Hazard. Mat., 2009, 161,120.
  • [15] HUANG Y.H., SHIH Y.J., CHANG C.C., Adsorption of fluoride by waste iron oxide: The effects of solution pH, major coexisting anions, and adsorbent calcination temperature, J. Hazard. Mat., 2011, 186 (2–3),1355.
  • [16] BHATNAGAR A., KUMAR E., SILLANPAA M., Fluoride removal from water by adsorption. A review, Chem. Eng. J., 2011, 171 (3), 811.
  • [17] ATASOY A.D., MERMUT A.R., KUMBUR H., INCE F., ARSLAN H., AVCI E.D., Sorption of alpha and beta hydrophobic endosulfan in a Vertisol from southeast region of Turkey, Chemosphere, 2009, 74,1450.
  • [18] LIU H., DENG S., LI Z., YU G., HUANG J., Preparation of Al–Ce hybrid adsorbent and its application for defluoridation of drinking water, J. Hazard. Mat., 2010, 179, 424.
  • [19] SPARKS D.L., Environmental soil chemistry, Academic Press, San Diego 1995.
  • [20] TANG Y., GUAN X., WANG J., GAO N., MCPHAIL M.R., CHUSUEI C.C., Fluoride adsorption onto granular ferric hydroxide: Effects of ionic strength, pH, surface loading, and major co-existing anions, J. Hazard. Mat., 2009, 171, 774.
  • [21] GAO S., CUI J., WEI Z., Study on the fluoride adsorption of various apatite materials in aqueous solution, J. Fluorine Chem., 2009,130, 1035.
  • [22] SUNDARAM C.S., VISWANATHAN N., MEENAKSHI S., Defluoridation of water using magnesia/chitosan composite, J. Hazard. Mat., 2009, 163, 618.
  • [23] ATASOY A.D., YESILNACAR M.I., ŞAHIN Ö.M., Removal of fluoride from contaminated ground water using raw and modified bauxite, Bull. Env. Cont. Toxicol., 2013, 91, 595.
  • [24] WAMBU E.W., ONINDO C.O., AMBUSSO W., MUTHAKIA G.K., Removal of Fluoride from Aqueous Solutions by Adsorption Using a Siliceous Mineral of a Kenyan Origin, Clean, 2013, 41 (4), 340.
  • [25] AGARWAL M., RAI K., SHRIVASTAS R., DASS S., Defluoridation of water using amended clay, J. Clean. Prod., 2003, 11, 439.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16f648b4-1219-4cf6-bdfe-bef37ae507a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.