Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Preliminary results of laboratory and field tests of fibre optic rotational seismographs designed for rotational seismology are presented. In order to meet new directions of the research in this field, there is clearly a great need for suitable and extremely sensitive wideband sensors. The presented rotational seismographs based on the fibre optic gyroscopes show significant advantages over other sensor technologies when used in the seismological applications. Although the presented results are prepared for systems designed to record strong events expected by the so-called “engineering seismology”, the described system modification shows that it is possible to construct a device suitable for weak events monitoring expected by basic seismological research. The presented sensors are characterized, first and foremost, by a wide measuring range. They detect signals with amplitudes ranging from several dozen nrad/s up to even few rad/s and frequencies from 0.01 Hz to 100 Hz. The performed Allan variance analysis indicates the sensors main parameters: angle random walk in the range of 3 ⋅ 10−8–2 ⋅ 10−7 rad/s and bias instability in the range of 2 ⋅ 10−9–2 ⋅ 10−8 rad/s depending on the device. The results concerning the registration of rotational seismic events by the systems located in Książ Castle, Poland, as well as in the coalmine “Ignacy” in Rybnik, Poland were also presented and analysed.
Wydawca
Czasopismo
Rocznik
Tom
Strony
213--219
Opis fizyczny
Bibliogr. 31 poz., rys., wykr.
Twórcy
autor
- Institute of Applied Physics, Military University of Technology, 2 gen. S. Kaliskiego St., Warszawa, 00-908, Poland
autor
- Institute of Applied Physics, Military University of Technology, 2 gen. S. Kaliskiego St., Warszawa, 00-908, Poland
autor
- Institute of Applied Physics, Military University of Technology, 2 gen. S. Kaliskiego St., Warszawa, 00-908, Poland
autor
- Institute of Geophysics, Polish Academy of Sciences, 64 Ks. Janusza St., Warszawa, 01-452, Poland
Bibliografia
- [1] Guéguen, P. & Astorga, A. The Torsional Response of Civil Engineering Structures during Earthguake from a Observational Point of View. Sensors 21, 342 (2021). https://doi.org/10.3390/s21020342
- [2] Zembaty, Z., Bernauer, F., Igel, H. & Schreiber, K. U. Rotation Rate Sensors and Their Applications. Sensors 21, 5344 (2021). https://doi.org/10.3390/s21165344
- [3] Guéguen, P., Guattari, F., Aubert, C. & LAudat. Comparing Direct Observation of Torsion with Array-Derived Rotation in Civil Engineering Structures. Sensors 21, 142 (2021). https://doi.org/10.3390/s21020142
- [4] Rossi, Y. et al. Kalman Filter-Based Fusion of Collocated Acceleration, GNSS and Rotation Data for 6C Motion Tracking. Sensors 21, 1543 (2021). https://doi.org/10.3390/s21041543
- [5] Fuławka, K., Pytel, W. & Pałac-Walko, B. Near-Field measurement of six degrees of freedom mining-induced termios in lower Siliesian coper basin. Sensors 20, 6801 (2020). https://doi.org/10.3390/s21020142
- [6] Lee, W. H. K. Seismology, Rotation. in Encyclopedia of Solid Earth Geophysics; (eds. Gupta, H. K.) 1–12 (Springer, Dordrecht, The Netherlands, 2019).
- [7] Chin-Jen, L., Chun-Chi, L. & Lee, W.H.K. Recording Rotational and Translational Ground Motions of Two TAIGER Explosions in Northeastern Taiwan on 4 March. Bull. Seismol. Soc. Am 99(2B), 1237–1250 (2008). https://doi.org/10.1785/0120080176
- [8] Trifunac, M. D. Rotations in Structural Response. Bull. Seismol. Soc. Am 99(2B), 968–979 (2009). https://doi.org/10.1785/01200800068
- [9] Grzebyk, W., Mertuszka, P. & Stolecki, L. Characteristics of the vibratory motion of a transaction and rotating character coming from mine seismic quakes. Wiadomości Górnicze 66(2), 97–103 (2015). [in Polish]
- [10] Kurzych, A. T, Jaroszewicz, L. R., Kowalski, J. K. & Sakowicz, B. Investigation of rotational motion in a reinforced concrete frame construction by a fibre optic gyroscope, Opto-Electron. Rev. 28(2), 69-73 (2020). https://doi.org/10.24425/opelre.2020.132503
- [11] Zembaty, Z., Mutke, G., Nawrocki, D. & Bobra, P. Rotational Ground-Motion Records from Induced Seismic Events, Seismol. Res. Let. 88(1), 13-22 (2017). https://doi.org/10.1785/0220160131
- [12] Kaláb, Z., Knejzlík, J. & Lednická, M. Observation of rotational component in digital data of mining induced seismic events. Górnictwo i Geologia 7(1), 75–85 (2012).
- [13] Ju, L., Blair, D. G. & Zhao, C. Detection of gravitational waves. Rep. Prog. Phys. 63, 1317–1427 (2000). https://doi.org/10.1088/0034-4885/63/9/201
- [14] Teisseyre R. Why rotational seismology: confrontation between classic and asymmetric theories. Bull. Seismol. Soc. Am. 101(4), 1683-1691 (2011). https://doi.org/10.1785/0120100078
- [15] Abreu, R., Kamm, J. & Reiß, A-S. Micropolar modelling of rotational waves in seismology. Geophys. J. Int. 210, 1021-1046 (2017). https://doi.org/10.1093/gji/ggx211
- [16] Hart, G. C., DiJulio, R. M. & Lew, M. Torsional response of high rise buildings ASCE, Journal of Structure Division 101(2), 397–415 (1975). https://doi.org/10.1061/JSDEAG.0003999
- [17] Suryanto, W. Rotational Motions in Seismology, Theory and Application. (LMU München: Faculty of Geosciences, 2006). https://edoc.ub.uni-muenchen.de/7850/1/Suryanto_Wiwit.pdf
- [18] Zerva, A. & Zhang, O. Corellation patterns in characteristic of spatially variable seismic ground motions. Earthquake Engineering & Structural Dynamics 26, 19–39 (1997). https://doi.org/10.1002/(SICI)1096-9845(199701)26:1%3C19::AID-EQE620%3E3.0.CO;2-F
- [19] Jaroszewicz, L.R. et al. Review of the usefulness of various rotational seismometers with laboratory results of fibre-optic ones tested for engineering applications. Sensors 16, 2161, (2016). https://doi.org/10.3390/s16122161
- [20] Sagnac, G. The light ether demonstrated by the effect of the relative wind in ether into a uniform rotation interferometer. Acad. Sci. 95, 708-710 (1913).
- [21] Post, E. J. Sagnac effect. Rev. Mod. Phys. 39, 475-496 (1967). https://doi.org/10.1103/RevModPhys.39.475
- [22] Lefevre, H. C., Martin, P. et al. High-dynamic-range fibre gyro with all-digital signal processing. Proc. of SPIE 1367, 72-80 (1991). https://doi.org/10.1117/12.24730
- [23] Niespodziany, S., Kurzych, A.T. & Dudek M. Detector diode circuit noise measurement and power supply method selection for the fibre optic seismograph, Opto-Electron. Rev. 29(2), 71-79 (2021). https://doi.org/10.24425/opelre.2021.135830
- [24] Kurzych, A. T. et al. Measurements of rotational events generated by artificial explosions and external excita-tions using the optical fibre sensors network, Sensors 20(21), 6107 (2020). https://doi.org/10.3390/s20216107
- [25] Bernauer, F. et al. Rotation, Strain and Translation Sensors Performance Tests with Active Seismic Sources. Sensors 21, 264 (2021). https://doi.org/10.3390/s21010264
- [26] Kurzych, A. T., Jaroszewicz, L. R., Dudek, M., Sakowicz, B. & Kowalski, J. K. Towards uniformity of rotational events recording – initial data from common test engaging more than 40 sensors including a wide number of fibre-optic rotational seismometers. Opto-Electron. Rev. 29(1), 39-44 (2021). https://doi.org/10.24425/opelre.2021.135827
- [27] Konno, K. & Ohmachi, T. Ground Motion characteristics estimated from spectral ratio between horizonatal and vertical components of microtermor. Bull. Seismol. Soc. Am. 88(1), 228-241 (1998). https://doi.org/10.1785/BSSA0880010228
- [28] Murray-Bergquist, L., Bernauer, F. & Igel, H. Characterization of Six-Degree-of-Freedom Sensors for Building Health Monitoring. Sensors 21, 3732 (2021). https://doi.org/10.3390/s21113732
- [29] IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fibre Optic Gyros. IEEE-SA Standards Boards 952 (1997). https://doi.org/10.1109/IEEESTD.1998.86153
- [30] Allan Variance: Noise Analysis for Gyroscopes. Applications Note AN5087 Rev. 0.2/2015. Freescale Semiconductor Inc. (2015). https://telesens.co/wp-content/uploads/2017/05/AllanVariance5087-1.pdf
- [31] Di Virgilio, A. D. et al. Sensitivity limit investigation of a Sagnac gyroscope through linear regression analysis. Eur. Phys. J. C 81, 400 (2021). https://doi.org/10.1140/epjc/s10052-021-09199-1
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16f53542-c89e-4bfb-911e-03e7fde5332d