PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Copper oxide–ferric oxide nanocomposite: Synthesis, characterization, and antibacterial and antifungal properties

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recently, copper oxide–ferric oxide nanocomposites (CuO/Fe2O3-NCs) have gained popularity and are widely employed in various applications. However, their effectiveness against phytopathogens has not been studied yet. This study investigates the synthesis and characterization of CuO/Fe2O3-NCs using the hydrothermal technique. X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectroscopy (FTIR) were used to characterize the produced nanocomposite (NC). EDX and TEM analyses revealed the presence of Cu, Fe, and O elements. The NC had a polygonal shape with sides around 12 nm, spherical CuO particles of 7–10 nm, and plate-likeFe2O3. XRD measurements confirmed the crystal and hexagonal structures of CuO and Fe2O3. The XRD patterns of CuO/Fe2O3 showed the characteristic peaks of (−111) and (004) reflections for CuO at 35.69° and 37.73°. The FTIR spectra showed characteristic lines at 525 and 567 cm−1 for the Cu–O bond and Fe–O stretching modes of Fe2O3, respectively. The antifungal activity of CuO/Fe2O3-NCs showed significant growth inhibition of Fusarium oxysporum, Rhizoctonia solani, and Botrytis cinerea by up to 71, 50, and 81%, respectively, at 100 µg/mL. At 50 µg/mL, the antibacterial test revealed inhibition zones of 12.33 mm for Pectobacterium carotovorum, 9.33 mm for Streptomyces scabies, 10.67 mm for Pectobacterium atrosepticum, and 14.67 mm for Ralstonia solanacearum. The results show that CuO/Fe2O3-NCs can efficiently suppress the growth of various fungal and bacterial strains, making them potential antimicrobial agents against phytopathogenic microorganisms.
Słowa kluczowe
Wydawca
Rocznik
Strony
100--110
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
  • Advanced Technology and New Materials Research Institute, City for Scientific Research and Technology Applications New Borg El-Arab City, Egypt
autor
  • Electronic Materials Researches Department, Advanced Technology and New Materials Research Institute, City for Scientific Research and Technology Applications New Borg El-Arab City, Egypt
  • Department of Botany and Microbiology, College of Science, King Saud University Riyadh, Saudi Arabia
  • Department of Food Technology of Plant Origin, Poznań University of Life Sciences Poznań, Poland Behiry, Said
  • Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University Alexandria, Egypt
  • City of Scientific Research and Technological Applications New Borg El-Arab City, Alexandria, Egypt
Bibliografia
  • [1] Abdelmoneim, H.M., Taha, T.H., Elnouby, M.S., AbuShady, H.M., Extracellular biosynthesis, OVAT/statistical optimization, and characterization of silver nanoparticles (AgNPs) using leclercia adecarboxylata THHM and its antimicrobial activity, Microb. Cell Fact., 2022, 21: 277
  • [2] Ali, A., Zafar, H., Zia, M., ul Haq, I., Phull, A.R., Ali, J.S., et al., Synthesis, characterization, applications, and challenges of iron oxide nanoparticles, Nanotechnol. Sci. Appl., 2016, 9: 49–67
  • [3] Samrot, A.V., Sahithya, C.S., Selvarani, J., Purayil, S.K., Ponnaiah, P., A review on synthesis, characterization and potential biological applications of superparamagnetic iron oxide nanoparticles, Curr. Res. Green. Sustain. Chem., 2021, 4: 100042
  • [4] Elnouby, M.S., Taha, T.H., Abu-Saied, M.A., Alamri, S.A., Mostafa, Y.S.M., Hashem, M., Green and chemically synthesized magnetic iron oxide nanoparticles-based chitosan composites: preparation, characterization, and future perspectives, J. Mater. Sci. Mater Electron., 2021, 32: 10587–10599
  • [5] Moustafa, M., Alamri, S., Elnouby, M., Taha, T., Abu-Saied, M.A., Shati, A., et al., Hydrothermal preparation of TiO2-Ag nanoparticles and its antimicrobial performance against human pathogenic microbial cells in water, Biocell, 2018, 42: 93
  • [6] Aragaw, T.A., Bogale, F.M., Aragaw, B.A., Iron-based nanoparticles in wastewater treatment: a review on synthesis methods, applications, and removal mechanisms, J. Saudi Chem. Soc., 2021, 25: 101280
  • [7] Montiel Schneider, M.G., Martín, M.J., Otarola, J., Vakarelska, E., Simeonov, V., Lassalle, V., et al., Biomedical applications of iron oxide nanoparticles: current insights progress and perspectives, Pharmaceutics, 2022, 14: 204
  • [8] Zhao, H., Zhu, Q., Gao, Y., Zhai, P., Ma, D., Iron oxide nanoparticles supported on pyrolytic graphene oxide as model catalysts for Fischer Tropsch synthesis, Appl. Catal. A Gen., 2013, 456: 233–239
  • [9] Tartaj, P., Morales, M.P., Gonzalez-Carreño, T., Veintemillas-Verdaguer, S., Serna, C.J., The iron oxides strike back: From biomedical applications to energy storage devices and photoelectrochemical water splitting, Adv. Mater., 2011, 23: 5243–5249, 10.1002/adma.201101368
  • [10] Baig, N., Kammakakam, I., Falath, W., Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges, Mater. Adv., 2021, 2: 1821–1871
  • [11] Khan, I., Saeed, K., Khan, I., Nanoparticles: properties, applications and toxicities, Arab. J. Chem., 2019, 12: 908–931
  • [12] Tran, H.-V., Ngo, N.M., Medhi, R., Srinoi, P., Liu, T., Rittikulsittichai, S., et al., Multifunctional iron oxide magnetic nanoparticles for biomedical applications: a review, Materials (Basel), 2022, 15: 503
  • [13] Birhanu, R., Afrasa, M.A., Hone, F.G., Recent progress of advanced metal-oxide nanocomposites for effective and low-cost antimicrobial activates: a review, J. Nanomater., 2023, 2023: 1–25
  • [14] Jin, P., Dalgarno, S.J., Atwood, J.L., Mixed metal-organic nanocapsules, Coord. Chem. Rev., 2010, 254: 1760–1768
  • [15] Su, Y., Shen, Z., Long, X., Chen, C., Qi, L., Chao, X., Gaussian filtering method of evaluating the elastic/elasto-plastic properties of sintered nanocomposites with quasi-continuous volume distribution, Mater. Sci. Eng. A, 2023, 872: 145001
  • [16] Owonubi, S.J., Ateba, C.N., Revaprasadu, N., Co-assembled ZnO-Fe2O3x-CuOx nano-oxide materials for antibacterial protection, Phosphorus Sulfur Silicon Relat. Elem., 2020, 195: 981–987
  • [17] Eldesouky, S.E., Aseel, D.G., Elnouby, M.S., Galal, F.H., Al-Farga, A., Hafez, E.E., et al., Synthesis of tungsten oxide, iron oxide, and copper-doped iron oxide nanocomposites and evaluation of their mixing effects with cyromazine against Spodoptera littoralis (boisduval), ACS Omega, 2023, 8: 44867–44879
  • [18] Rashad, M.M., Rayan, D.A., Ramadan, A.A., Optical and magnetic properties of CuO/CuFe2O4 nanocomposites, J. Mater. Sci. Mater. Electron., 2013, 24: 2742–2749
  • [19] Pachaiappan, R., Rajendran, S., Show, P.L., Manavalan, K., Naushad, M., Metal/metal oxide nanocomposites for bactericidal effect: a review, Chemosphere, 2021, 272: 128607
  • [20] Attarilar, S., Yang, J., Ebrahimi, M., Wang, Q., Liu, J., Tang, Y., et al., The toxicity phenomenon and the related occurrence in metal and metal oxide nanoparticles: a brief review from the biomedical perspective, Front. Bioeng. Biotechnol., 2020, 8: 822
  • [21] Lu, W., Wang, M., Wu, J., Jiang, Q., Jin, J., Jin, Q., et al., Spread of chloramphenicol and tetracycline resistance genes by plasmid mobilization in agricultural soil, Environ. Pollut., 2020, 260: 113998
  • [22] Rose, G.R.F., Howdon, J.B., Bayley, C.H., Observations on the use of copper formate as a rotproofer for cotton fabric, Text. Res. J., 1959, 29: 996–1005, 10.1177/004051755902901210
  • [23] Rossmoore, H.W., The interaction of formaldehyde, isothiazolone and copper, Int. Biodeterior., 1990, 26: 225–235, 10.1016/0265-3036(90)90062-C
  • [24] Abrams, E., Bottoms, R.R., A copper process for prolonged microbiological protection of cellulosic fabrics by chemical modification, Text. Res. J., 1956, 26: 630–640, 10.1177/004051755602600808
  • [25] Zhou, Y., Sun, P., Cao, Y., Yang, J., Wu, Q., Peng, J., Biocompatible copper formate-based nanoparticles with strong antibacterial properties for wound healing, J. Nanobiotechnol., 2023, 21: 474
  • [26] Aamer, H.A., Al-Askar, A.A., Gaber, M.A., El-Tanbouly, R., Abdelkhalek, A., Behiry, S., et al., Extraction, phytochemical characterization, and antifungal activity of Salvia rosmarinus extract, Open. Chem., 2023, 21: 20230124, 10.1515/chem-2023-0124
  • [27] Hammer, P.E., Evensen, K.B., Janisiewicz, W.J., Postharvest control of botrytis cinerea infections on cut rose flowers with pyrrolnitrin, HortScience, 2019, 25: 1139a, 10.21273/hortsci.25.9.1139a
  • [28] Miller, S.A., Ferreira, J.P., LeJeune, J.T., Antimicrobial use and resistance in plant agriculture: a one health perspective, Agriculture, 2022, 12: 289
  • [29] Stockwell, V.O., Duffy, B., Use of antibiotics in plant agriculture, Rev. Sci. Tech. Int. Des. Epizoot., 2012, 31: 199–210
  • [30] Campbell, C.K., Johnson, E.M., Warnock, D.W. Identification of pathogenic fungi, John Wiley & Sons, Hoboken, NJ, USA, 2013, 10.1002/9781118520055
  • [31] Dugan, F.M. The identification of fungi: an illustrated introduction with keys, glossary, and guide to literaturey, APS Press, Saint Paul, MN, USA, 2006, 10.1094/9780890545041
  • [32] White, T.J., Bruns, T., Lee, S., Taylor, J., Amplification and direct sequencing of fungal ribosomal rna genes for phylogenetics, PCR Protoc., 1990, 18: 315–322, 10.1016/b978-0-12-372180-8.50042-1
  • [33] Soliman, S.A., Al-Askar, A.A., Sobhy, S., Samy, M.A., Hamdy, E., Sharaf, O.A., et al., Differences in pathogenesis-related protein expression and polyphenolic compound accumulation reveal insights into tomato–pythium aphanidermatum interaction, Sustainability, 2023, 15: 6551
  • [34] El-Bilawy, E.H., Al-Mansori, A.-N.A., Soliman, S.A., Alotibi, F.O., Al-Askar, A.A., Arishi, A.A., et al., Antifungal, antiviral, and HPLC analysis of phenolic and flavonoid compounds of amphiroa anceps extract, Sustainability, 2022, 14: 12253
  • [35] Al-Askar, A.A., Bashir, S., Mohamed, A.E., Sharaf, O.A., Nabil, R., Su, Y., et al., Antimicrobial efficacy and HPLC analysis of polyphenolic compounds in a whole-plant extract of Eryngium campestre, Separations, 2023, 10: 362
  • [36] Kumar, A., Shukla, R., Singh, P., Prasad, C.S., Dubey, N.K., Assessment of Thymus vulgaris L. essential oil as a safe botanical preservative against post harvest fungal infestation of food commodities, Innov. Food Sci. Emerg. Technol., 2008, 9: 575–580, 10.1016/j.ifset.2007.12.005
  • [37] Hamdy, E., El-Gendi, H., Al-Askar, A., El-Far, A., Kowalczewski, P., Behiry, S., et al., Copper oxide nanoparticles-mediated Heliotropium bacciferum leaf extract: antifungal activity and molecular docking assays against strawberry pathogens, Open. Chem., 2024, 22: 20240028, 10.1515/chem-2024-0028
  • [38] Heatley, N.G., A method for the assay of penicillin, Biochem. J., 1944, 38: 61
  • [39] Balouiri, M., Sadiki, M., Ibnsouda, S.K., Methods for in vitro evaluating antimicrobial activity: a review, J. Pharm. Anal., 2016, 6: 71–79, 10.1016/j.jpha.2015.11.005
  • [40] Statistical Analysis System (SAS). Institute INC, PC-SAS user guide, version 8. North Carolina Statistical Analysis System Institute, Inc., Cary, NC 27513, USA, 2002
  • [41] Ramadan, M., Elnouby, M.S., El-Shazly, O., El-Wahidy, E.F., Farag, A.A.M., Roushdy, N., Facile fabrication, structural and electrical investigations of cadmium sulfide nanoparticles for fuel cell performance, Mater. Renew. Sustain. Energy, 2022, 11: 1–10
  • [42] Taha, T.H., Abu-Saied, M.A., Elnouby, M.S., Hashem, M., Alamri, S., Mostafa, Y., Designing of pressure-free filtration system integrating polyvinyl alcohol/chitosan-silver nanoparticle membrane for purification of microbe-containing water, Water Supply, 2019, 19: 2443–2452
  • [43] Nabil, M., Motaweh, H.A., Dendritic porous silicon as a heavy metal removal (copper element), Eвpaзийcкий Coюз Yчeныx, 2019, 4: 55–59
  • [44] Farahmandjou, M., Soflaee, F., Synthesis and characterization of α-Fe2O3 nanoparticles by simple co-precipitation method, Phys. Chem. Res., 2015, 3: 191–196
  • [45] Nabil, M., Mahmoud, K.R., Nomier, R., El-Maghraby, E.-M., Motaweh, H., Nano-porous-silicon powder as an environmental friend, Materials (Basel), 2021, 14: 4252
  • [46] Eltarahony, M., Abu-Serie, M., Hamad, H., Zaki, S., Abd-El-Haleem, D., Unveiling the role of novel biogenic functionalized CuFe hybrid nanocomposites in boosting anticancer, antimicrobial and biosorption activities, Sci. Rep., 2021, 11: 7790
  • [47] Parameswaran, S., Bakkiyaraj, R., Shanmugam, P., Boonyuen, S., Venugopal, T., Investigation of biological efficacy assessment of cobalt-doped cerium oxide nanocomposites against pathogenic bacteria, fungi, and lung cancer cells, Mater. Chem. Phys., 2024, 321: 129496
  • [48] Hasanin, M.S., Hashem, A.H., Al-Askar, A.A., Haponiuk, J., Saied, E., A novel nanocomposite based on mycosynthesized bimetallic zinc-copperoxide nanoparticles, nanocellulose and chitosan: characterization, antimicrobial and photocatalytic activities, Electron. J. Biotechnol., 2023, 65: 45–55
  • [49] Raghupathi, K.R., Koodali, R.T., Manna, A.C., Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles, Langmuir, 2011, 27: 4020–4028
  • [50] He, G., Li, H., Zhao, Z., Liu, Q., Yu, J., Ji, Z., et al., Antifouling coatings based on the synergistic action of biogenic antimicrobial agents and low surface energy silicone resins and their application to marine aquaculture nets, Prog. Org. Coat., 2024, 195: 108656
  • [51] Almessiere, M.A., Slimani, Y., Rehman, S., Khan, F.A., Güngüneş, ÇD, Güner, S., et al., Magnetic properties, anticancer and antibacterial effectiveness of sonochemically produced Ce3+/Dy3+ co-activated Mn-Zn nanospinel ferrites, Arab. J. Chem., 2020, 13: 7403–7417
  • [52] Ansari, M.A., Albetran, H.M., Alheshibri, M.H., Timoumi, A., Algarou, N.A., Akhtar, S., et al., Synthesis of electrospun TiO2 nanofibers and characterization of their antibacterial and antibiofilm potential against gram-positive and gram-negative bacteria, Antibiotics, 2020, 9: 572
  • [53] Zhang, L., Shi, H., Tan, X., Jiang, Z., Wang, P., Qin, J., Ten-gram-scale mechanochemical synthesis of ternary lanthanum coordination polymers for antibacterial and antitumor activities, Front. Chem., 2022, 10: 898324
  • [54] El-Moslamy, S.H., Elnouby, M.S., Rezk, A.H., El-Fakharany, E.M., Scaling-up strategies for controllable biosynthetic ZnO NPs using cell free-extract of endophytic Streptomyces albus: characterization, statistical optimization, and biomedical activities evaluation, Sci. Rep., 2023, 13: 3200
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16f38995-580a-43c5-866d-d6f71ea695cc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.