PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

3D modelling of historic buildings based on integrated data from airborne and terrestrial laser scanning

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Currently, the modelling of historic buildings is most often performed on the basis of data obtained by terrestrial laser scanning. It ensures both the speed of information acquisition and the high accuracy of the final elaboration. However, there are situations in which the terrain layout or the structure of the building limits the possibility of obtaining full information on its shape. In such situations, the solution is to integrate data from various measurement devices. In the case of creating a full 3D model of large buildings, one of the ways to supplement the data, especially the roof of the building, is to use data from airborne laser scanning. The research used the integration of airborne laser scanning data with data recorded with the Leica ScanStation P40 terrestrial laser scanner. Combined point clouds were used for 3D modelling of two different historic buildings in Krakow. Modelling was performed with the Bentley CAD software and in Leica Cyclon 3DR and 3DReshaper. The accuracy of data integration was determined and the advantages and disadvantages of using the above-mentioned software for 3D modelling of architectural objects were shown. The result of the study is a 3D model of St. Florian’s Gate and the Palace of Art in Krakow.
Rocznik
Tom
Strony
259--273
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
  • University of Agriculture in Krakow Department of Agricultural Land Surveying, Cadastre and Photogrammetry 30-198 Kraków, ul. Balicka 253a
autor
  • Krakowska Firma Geodezyjna os. Złota Jesień 6, Kraków
  • GeoWay Marek Zapała, Krzysztof Woźniak s.c. Zachybie 16, 26-080 Mniów
Bibliografia
  • Bernat M., Janowski A., Rzepa S. 2014. Studies on the use of terrestrial laser scanning in the maintenance of buildings belonging to the cultural heritage. 14th SGEM GeoConference on Informatics, Geoinformatics and Remote Sensing. Albena, Bulgaria, vol. 3, 307–318. https://doi.org/10.5593/SGEM2014/B23/S10.039.
  • Bęcek K., Gawronek P., Klapa P., Kwoczyńska B., Matuła P., Michałowska K., Mikrut S., Mitka B., Piech I., Makuch M. 2015. Modelowanie i wizualizacja danych 3D na podstawie pomiarów fotogrametrycznych i skaningu laserowego. WSIE, Rzeszów.
  • Boehler W., Marbs A. 2004. 3D Scanning and Photogrammetry for Heritage Recording: a Comparision. 12th International Conference of Geoinformatics, Gavle, Sweden, 291–298.
  • Boroń A., Rzońca A., Wróbel A. 2007. The digital photogrammetry and laser scanning methods used for heritage documentation. Roczniki Geomatyki, 5, 129–140.
  • Buckley S.J., Howell J.A., Enge H.D., Leren B.L.S., Kurz T.H. 2006. Integration of Terrestrial Laser Scanning, Digital Photogrammetry and Geostatical Methods for High-Resolution Modelling of Geological Outcrops. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Dresden, Germany, XXXVI, Part B.
  • Cantoni R., Vassena G., Lanzi C. 2002. Laser Scanning and Traditional Survey Integration to Build a Complete 3D Digital Model of Sagrestia dell’Archivo di Stato a Mantova. CIPA-ISPRS Workshop on Scanning for Cultural Heritage Recording, Korfu, Greece, 105–114.
  • Figiel M. 2015. Skanowanie laserowe, modelowanie i inwentaryzacja 3D w przemyśle i budownictwie. Nowoczesne Technologie w Przemyśle, 1/3a (52), 56–64.
  • Gawronek P., Mitka B. 2015. The use of terrestrial laser scanning in monitoring of the residential barracks at the site of the former concentration camp Auschwitz II-Birkenau. Geomatics, Landmanagement and Landscape, 3, 53–60. http://dx.doi.org/10.15576/GLL/2015.3.53
  • Guarnieri A., Remondino F., Vettore A. 2006. Digital Photogrammetry and TLS Data Fusion Applied to Cultural Heritage 3D Modelling. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Dresden, Germany, XXXVI, Part B.
  • Janus J., Ostrogórski P. 2022. Underground Mine Tunnel Modelling Using Laser Scan Data in Relation to Manual Geometry Measurements. Energies, 15(7), 2537, http://dx.doi.org/10.3390/en15072537
  • Klapa P., Mitka B., Zygmunt M. 2017. Application of Integrated Photogrammetric and Terrestrial Laser Scanning Data to Cultural Heritage Surveying. IOP Conference Series: Earth and Environmental Science, 95, 032007. http://dx.doi.org/10.1088/1755-1315/95/3/032007
  • Klapa P., Mitka B., Zygmunt M. 2022. Integration of TLS and UAV data for the generation of a three-dimensional. Advances in Geodesy and Geoinformation, 71, 2, article e27
  • Kocur-Bera K., Dawidowicz A. 2019. Land Use versus Land Cover: Geo-Analysis of National Roads and Synchronisation Algorithms. Remote Sensing, 11(24), 3053, https://doi.org/10.3390/rs11243053
  • Kudas D., Wnęk A., Tátošová L. 2022. Land Use Mix in Functional Urban Areas of Selected Central European Countries from 2006 to 2012. International Journal of Environmental Research and Public Health, 19(22), 15233. https://doi.org/10.3390/ijerph192215233
  • Kukko A., Kaartinen H., Hyyppä J., Chen Y. 2012. Multiplatform Mobile Laser Scanning: Usability and Performance. Sensors, 12, 11712–11733.
  • Kwoczyńska B. 2019. Modelling of a heritage property using a variety of photogrammetric methods. Geomatics, Landmanagement and Landscape, 4, 155–169. http://dx.doi.org/10.15576/GLL/2019.4.155
  • Kwoczyńska B., Litwin U., Piech I., Obirek P., Śledź J. 2016. The Use of Terrestrial Laser Scanning in Surveying Historic Buildings. IEEE Xplore, 263–268. https://doi.org/10.1109/BGC. Geomatics.2016.54
  • Kwoczyńska B., Małysa B. 2022. Integration of data obtained from laser scanning and UAV used to develop a 3D model of the building object. Archives of Civil Engineering, LXVIII, 4, 311–33. https://doi.org/10.24425/ace.2022.143040
  • Kwoczyńska B., Piech I., Góra K., Polewany P. 2018. Modeling of Sacral Objects Made on the Basis of Aerial and Terrestrial Laser Scanning. IEEE Xplore, 275–282. https://doi.org/10.1109/ BGC-Geomatics.2018.00059
  • Lichti D.D., Gordon S.J. 2007. Modeling Terrestrial Laser Scanner Data for Precise Structural Deformation Measurement. Journal of Surveying Engineering, 133, 272–280.
  • Mitka B., Klapa P., Pióro P. 2023. Acquisition and Processing Data from UAVs in the Process of Generating 3D Models for Solar Potential Analysis. Remote Sensing, 15, 1498, https://doi.org/10.3390/rs15061498
  • Mitka B., Szelest P. 2013. The problem of acquisition and processing of photogrammetric data and data from terrestrial laser for the creation of educational portals and virtual museums on example of the Wawel Cathedral. Archives of Photogrammetry, Cartography and Remote Sensing, 25, 107–115.
  • Nowak K. 2022. Wykorzystanie skaningu naziemnego do modelowania 3D obiektu architektonicznego na przykładzie Bramy Floriańskiej w Krakowie. Praca dyplomowa wykonana pod kierunkiem dr inż. Bogusławy Kwoczyńskiej. UR Kraków.
  • Pilecki R. 2012. Zastosowanie naziemnego skanera laserowego. Czasopismo Techniczne. Wydawnictwo Politechniki Krakowskiej, 9-M/2008, Kraków, 223–233.
  • Pyka K., Rzońca A. 2006. Badanie jakości radiometrycznej ortofotogramów sporządzonych na drodze integracji fotogrametrii biskiego zasięgu i skaningu. Archiwum Fotogrametrii, Kartografii i Teledetekcji, Olsztyn, Polska, 16, 512–526.
  • Quintero M.S., Garcia J.L.L., Genechten B.V. 2008. 3D Risk Mapping Theory and Practice on Terrestrial Laser Scanning. Training Material Based on Practical Applications, Universidad Politecnica de Valencia, Valencia, Spain.
  • Schueremans L., Van Genechten B. 2009. The Use of 3D Laser Scanning in Assessing the Safety of Masonry Vaults. A Case Study on the Church of Saint Jacobs. Optics and Lasers in Engineering (Journal of Elsevier), 47, 329–335.
  • Skrzypczak I., Oleniacz G., Leśniak A., Zima K., Mrówczyńska M., Kazak J.K. 2022. Scanto-BIM method in construction: Assessment of the 3D buildings model accuracy in terms inventory measurements. Building Research & Information, 50, 859–880. https://doi.org/10.1080/09613218.2021.2011703
  • Uchański Ł., Soerensen L. 2010. Technologia naziemnego skaningu laserowego w zagadnieniach inżynierii odwrotnej oraz analiz procesów dynamicznych. Archiwum Fotogrametrii, Kartografii i Teledetekcji, 21, 415–421.
  • Vatan M., Oğuz Selbesoğlu M., Bayram B. 2009. The use of 3D laser scanning technology in preservation of historical structures. Conservation News, 26, 659–669.
  • Woźniak K. 2019. Opracowanie modelu 3D obiektu na podstawie zintegrowanych danych z lotniczego i naziemnego skaningu laserowego. Praca dyplomowa wykonana pod kierunkiem dr inż. Bogusławy Kwoczyńskiej. UR Kraków.
  • https://www.palac-sztuki.krakow.pl [accessed: 2.03.2023].
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16e8e0bc-399d-41db-ab95-e7f1112cc993
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.