Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper assesses the mass concentration of heavy metals in the soils of abandoned mines in the Chervonohrad mining district. The main negative factors of coal mining dumps include high acidity, exceeding the maximum permissible concentration of heavy metals, low organic matter content, low humidity, high temperature of substrates, wind and water erosion, steepness and large area of slopes. Heavy metals not only accumulate in the soils of the industrial zone, but also leak into the underground water. Soils in this area are heavily polluted, with the highest levels of contamination occurring at the foot of the dumps. The highest mass concentrations of aluminum and iron were found to exceed 1 mg/kg, indicating oversaturation with these metals. High concentrations of heavy metals can lead to changes in soil biological communities, impacting soil fertility. An analysis of cadmium levels near the coal mine dump showed a higher content of 0.62 mg/kg compared to the background area but did not exceed the maximum permissible concentration (MPC) of 0.7 mg/kg. The average metal content did not exceed 0.35 mg/ kg. Cobalt levels in the study area ranged from 0.2 to 2.2 mg/kg, below the background level of 3.0 mg/kg and the MPC of 5 mg/kg. The waste from the coal industry exhibited a low content of mobile zinc, with a maximum concentration of 5.84 mg/kg, which is 0.15 MPC but exceeds the background concentration by more than 30%.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
241--250
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
autor
- Department of Ecology, Ivano-Frankivsk National Technical University of Oil and Gas, Karpatska St. 15, IvanoFrankivsk, 79019, Ukraine
autor
- Department of Geodesy and Land Management, Ivano-Frankivsk National Technical University of Oil and Gas, Karpatska St. 15, Ivano-Frankivsk, 79019, Ukraine
Bibliografia
- 1. Abramowicz A.K., Rahmonov O. 2024. Element cycling at thermally active coal-waste dumps: a case study of Calamagrostis epigejos and Solidago canadensis. Resources., 13, 73. https://doi.org/10.3390/resources13060073
- 2. Akanchise T., Boakye S., Borquaye L.S., Dodd M., Darko G. 2020. Distribution of heavy metals in soils from abandoned dump sites in Kumasi, Ghana. Scientific African, 10, e00614. https://doi.org/10.1016/j.sciaf.2020.e00614
- 3. An R., Wang Y., Zhang X., Chen C., Liu X., Cai S. 2023. Quantitative characterization of dryinginduced cracks and permeability of granite residual soil using micron-sized X-ray computed tomography. Sci. Total Environ., 876, 163213 https://doi.org/10.1016/j.scitotenv.2023.163213
- 4. Bosak P., Popovych V., Stepova K., Dudyn R. 2020a. Environmental impact and toxicological properties of mine dumps of the Lviv-Volyn Coal basin. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 2(440). 48–54. https://doi.org/10.32014/2020.2518-170X.30
- 5. Bosak P., Popovych V., Stepova K., Marutyak S. 2020b. Environmental impact and toxicological properties of mine dumps of the Lviv-Volyn coal basin. News of National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 5(443). 39–46. https://doi.org/10.32014/2020.2518-170X.1
- 6. Brodny J., Tutak M. 2022. Challenges of the polish coal mining industry on its way to innovative and sustainable development. Journal of Cleaner Production, 375, 134061 https://doi.org/10.1016/j.jclepro.2022.134061
- 7. Chelovechkova A., Komissarova I., Eremin D. 2018. Using basic hydrophysical characteristics of soils in calculating capacity of water-retaining fertile layer in recultivation of dumps of mining and oil industry. IOP Conf. Series: Earth and Environmental Science, 194, 092004. https://doi:10.1088/1755-1315/194/9/092004
- 8. Chilikwazi B., Onyari J.M., Wanjohi J.M. 2023. Determination of heavy metals concentrations in coal and coal gangue obtained from a mine, in Zambia. International Journal of Environmental Science and Technology, 20, 2053–2062. https://doi.org/10.1007/s13762-022-04107-w
- 9. Hook K., Marcantonio R. 2023. Environmental dimensions of conflict and paralyzed responses: the ongoing case of Ukraine and future implications for urban warfare. Small Wars & Insurgencies, 34(8), 1400–1428. https://doi.org/10.1080/09592318.2022.2035098
- 10. Khalil A., Taha Y., Benzaazoua M., Hakkou R. 2023. Applied Methodological approach for the assessment of soil contamination by trace elements around abandoned coal mines – a case study of the Jerada сoal mine, Morocco. Minerals., 13, 181 https://doi.org/10.3390/min13020181
- 11. Królak E. 2021. Negative and positive aspects of the presence of canadian goldenrod in the environment. Environmental Protection and Natural Resources, 32, 6–12. https://doi.org/10.2478/oszn-2021-0002
- 12. Kumari M., Bhattacharya T. 2023. A review on bioaccessibility and the associated health risks due to heavy metal pollution in coal mines: Content and trend analysis. Environmental Development, 46, 100859. https://doi.org/10.1016/j.envdev.2023.100859
- 13. Nadudvari A., Abramowicz A., Ciesielczuk J., Cabala J., Misz-Kennan M., Fabianska M. 2021. Self-heating coal waste fire monitoring and related environmental problems: case studies from Poland and Ukraine. Journal of Environmental Geography, 14(3-4), 26–38. https://doi.org/10.2478/jengeo-2021-0009
- 14. Oziegbe O., Oluduro A.O., Oziegbe E.J., Ahuekwe E.F., Olorunsola S.J. 2021. Assessment of heavy metal bioremediation potential of bacterial isolates from landfill soils. Saudi Journal of Biological Sciences, 28(7), 3948–3956. https://doi.org/10.1016/j.sjbs.2021.03.072
- 15. Petlovanyi M., Kuzmenko O., Lozynskyi V., Popovych V., Sai K., Saik P. 2019. Review of man-made mineral formations accumulation and prospects of their developing in mining industrial regions in Ukraine. Mining of Mineral Deposits, 13(1), 24- 38. https://doi.org/10.33271/mining13.01.024
- 16. Petlovanyi M., Sai K., Malashkevych D., Popovych V., Khorolskyi A. 2023. Influence of waste rock dump placement on the geomechanical state of underground mine workings. IOP Conf. Series: Earth and Environmental Science, 1156, 012007. https://doi:10.1088/1755-1315/1156/1/012007
- 17. Pohrebennyk V., Dzhumelia E. 2020. Environmental assessment of the impact of tars on the territory of the Rozdil state mining and chemical enterprise «Sirka» (Ukraine). Sustainable Production: Novel Trends in Energy, Environment and Material Systems. Studies in Systems, Decision and Control. Springer, 1(198), 201–214. https://doi.org/10.1007/978-3-030-11274-5_13
- 18. Pohrebennyk V., Koszelnik P., Mitryasova O., Dzhumelia E., Zdeb M. 2019. Environmental monitoring of soils of post-industrial mining areas. Journal of Ecological Engineering, 20(9), 53–61. https://doi.org/10.12911/22998993/1123426
- 19. Popovych V., Stepova K., Voloshchyshyn A., Bosak P. 2019a. Physico-chemical properties of soils in Lviv Volyn coal basin area. E3S Web of Conferences, 105, 02002. https://doi.org/10.1051/e3sconf/201910502002
- 20. Popovych V., Voloshchyshyn A. 2019b. Features of temperature and humidity conditions of extinguishing waste heaps of coal mines in spring. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 4(436). 230–237. https://doi.org/10.32014/2019.2518-170X.118
- 21. Popovych V., Voloshchyshyn A., Tyndyk O., Menshykova O., Shuplat T., Bosak P. 2022. Monitoring of heavy metals migration into edaphic horizons of coal mine dumps. Ecologia Balkanica, 14(2), 63-74.
- 22. Segui P., Safhi A.Е.M., Amrani M., Benzaazoua M. 2023. Mining wastes as road construction material: a review. Minerals., 13, 90. https://doi.org/10.3390/min13010090
- 23. Silva L.C.R., Lambers H. 2021. Soil-plant-atmosphere interactions: Structure, function, and predictive scaling for climate change mitigation. Plant Soil., 461, 5–27 https://doi.org/10.1007/s11104-020-04427-1
- 24. Singh S., Maiti S.K., Raj D. 2023. An approach to quantify heavy metals and their source apportionment in coal mine soil: a study through PMF model. Environmental Monitoring and Assessment, 195, 306. https://doi.org/10.1007/s10661-023-10924-4
- 25. Skrobala V., Popovych V., Pinder V. 2020. Ecological patterns for vegetation cover formation in the mining waste dumps of the Lviv-Volyn coal basin. Mining of Mineral Deposits, 14(2), 119-127. https://doi.org/10.33271/mining14.02.119
- 26. Skrobala V., Popovych V., Tyndyk O., Voloshchyshyn A. 2022. Chemical pollution peculiarities of the Nadiya mine rock dumps in the Chervonohrad Mining District, Ukraine. Mining of Mineral Deposits, 16, 71–79. https://doi.org/10.33271/mining16.04.071
- 27. Terekhov Ye., Litvinov Yu., Fenenko V., Drebenstedt C. 2021. Management of land reclamation quality for agricultural use in opencast mining. Mining of Mineral Deposits, 15(1), 112–118. https://doi.org/10.33271/mining15.01.112
- 28. Tymchuk I., Malovanyy M., Shkvirko O., Chornomaz N., Popovych O., Grechanik R., Symak D. 2021. Review of the global experience in reclamation of disturbed lands. Inzynieria Ekologiczna, 22(1), 24–30. https://doi.org/10.12912/27197050/132097
- 29. Ulytskiy O., Yermakov V., Lunova O., Miliekhin P. 2019. Development of an algorithm for classifying potentially hazardous objects by industry sectors and their impact on the environment. Environmental Sciences, 1(24), 12-19. https://doi.org/10.32846/2306-9716-2019-1-24-2-3
- 30. Watson B., Lange I., Linn J. 2023. Coal demand, market forces, and U.S. coal mine closures. Economic Inquiry, 61(1), 35–57. https://doi.org/10.1111/ecin.13108
- 31. Welch C., Barbour S.L., Hendry M.J. 2021. The geochemistry and hydrology of coal waste rock dumps: a systematic global review. Science of The Total Environment, 795, 148798. https://doi.org/10.1016/j.scitotenv.2021.148798
- 32. Woch M.W., Radwańska M., Stanek M., Łopata B., Stefanowicz A.M. 2018. Relationships between waste physicochemical properties, microbial activity and vegetation at coal ash and sludge disposal sites. Science of The Total Environment, 642, 264–275. https://doi.org/10.1016/j.scitotenv.2018.06.038
- 33. Wu Y., Yu X., Hu S., Shao H., Liao Q., Fan Y. 2019. Experimental study of the effects of stacking modes on the spontaneous combustion of coal gangue. Process Safety and Environmental Protection, 123, 39–47. https://doi.org/10.1016/j.psep.2018.12.025
- 34. Yang W., He S. 2023 Coal mine safety management index system and environmental risk model based on sustainable operation. Sustainable Energy Technologies and Assessments, 53, 102721 https://doi.org/10.1016/j.seta.2022.102721
- 35. Zhang C., Bai Q., Han, P. 2023. A review of water rock interaction in underground coal mining: problems and analysis. Bulletin of Engineering Geology and the Environment, 82, 157. https://doi.org/10.1007/s10064-023-03142-2
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16e4b9ca-7e17-4d38-aeca-72fc45b6043f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.