Identyfikatory
Warianty tytułu
Uogólnione rozwiązanie ograniczenia górnego problemu wytłaczania bimetalowych belek o przekroju prostokątnym za pomocą tłoczników o dowolnym kształcie
Języki publikacji
Abstrakty
In this paper, a generalized upper bound solution is developed for extrusion of bi-metallic rectangular cross-section bars through dies of any shape. The internal, shearing and frictional power terms are derived and they are used in the upper bound model. By using the developed upper bound model, the extrusion pressures for two types of die shapes, an optimum wedge shaped die as a linear die profile and an optimum streamlined die shape as a curved die profile, are determined. The corresponding results for those two die shapes are also determined by using the finite element code and compared with the upper bound results. These comparisons show a good agreement.
W pracy wyprowadzono uogólnione rozwiązanie ograniczenia górnego problemu wytłaczania bimetalowych belek o przekroju prostokątnym za pomocą tłoczników o dowolnym kształcie. Wyznaczono wyrażenia potęgowe opisujące wewnętrzne, ścinające oraz tarciowe obciążenia i zastosowano je w modelu matematycznym omawianego zagadnienia. Zaproponowana metoda badań pozwoliła na określenie nacisku podczas wytłaczania elementów przy użyciu dwóch typów tłocznika – optymalnego klinowego o profilu liniowym oraz tłocznika o zarysie krzywoliniowym, opływowym. W obydwu przypadkach obliczenia porównano z wynikami uzyskanymi z metody elementów skończonych. Porównanie to wykazało dobrą zgodność rozwiązania ograniczenia górnego z rezultatami MES.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
105--116
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
- Razi University, Mechanical Engineering Department, Kermanshah, Iran
autor
- Razi University, Mechanical Engineering Department, Kermanshah, Iran
Bibliografia
- 1. Avitzur B., 1968, Metal Forming: Processes and Analysis, McGraw-Hill, New York
- 2. Avitzur B., 1983, Handbook of Metal-Forming Processes, Wiley, New York
- 3. Berski S., Dyja H., Banaszek G., Janik M., 2004, Theoretical analysis of bimetal bar extrusion process in double reduction dies, Journal of Materials Processing Technology, 154, 153-183
- 4. Chen C.C., Oh S.I., Kobayashi S., 1979, Ductile fracture in axisymmetric extrusion and drawing - Part 1: deformation mechanics of extrusion and drawing metal, Transactions of the ASME, Journal of Engineering for Industry, 101, 23-35
- 5. Chitkara N.R., Aleem A., 2001a, Extrusion of axi-symmetric bi-metallic tubes from solid circular bars: application of a generalized upper bound analysis and some experiments, International Journal of Mechanical Sciences, 43, 2833-2856
- 6. Chitkara N.R., Aleem A., 2001b, Extrusion of axi-symmetric bi-metallic tubes: some experiments using hollow bars and the application of a generalized slab method of analysis, International Journal of Mechanical Sciences, 43, 2857-2882
- 7. Gordon W.A, Van Tyne C.J., Moon Y.H., 2007a, Axisymmetric extrusion through adaptable dies – Part 1: Flexible velocity fields and power terms, International Journal of Mechanical Sciences, 49, 86-95
- 8. Gordon W.A., Van Tyne C.J., Moon Y.H., 2007b, Axisymmetric extrusion through adaptable dies - Part 3: Minimum pressure streamlined die shapes, International Journal of Mechanical Sciences, 49, 104-115
- 9. Haghighat H., Amjadian P., 2011, A generalized velocity field for plane strain extrusion through arbitrarily curved dies, Transactions of the ASME, Journal of Manufacturing Science and Engineering, 133, 041006
- 10. Haghighat H., Asgari G.R., 2011, A generalized spherical velocity field for bi-metallic tube extrusion through dies of any shape, International Journal of Mechanical Sciences, 53, 248-253
- 11. Hwang Y.M., Hwang T.F., 2002, An investigation into the plastic deformation behavior within a conical die during composite bar extrusion, Journal of Materials Processing Technology, 12, 226-233
- 12. Kang C.G., Jung Y.J., Kwon H.C., 2002, Finite element simulation of die design for hot extrusion process of Al/Cu clad composite and its experimental investigation, Journal of Materials Processing Technology, 124, 49-56
- 13. Nagpal V., 1974, General kinematically admissible velocity fields for some axisymmetric metal forming problems, Transactions of the ASME, Journal of Engineering for Industry, 96, 1197-1201
- 14. Osakada K., Limb M., Mellor P.B., 1973, Hydrostatic extrusion of composite bars with hard cores, International Journal of Mechanical Sciences, 15, 291-307
- 15. Sliwa R., 1997, Plastic zones in the extrusion of metal composites, Journal of Materials Processing Technology, 67, 29-35
- 16. Tokuno H., Ikeda K., 1991, Analysis of deformation in extrusion of composite bars, Journal of Materials Processing Technology, 26, 323-335
- 17. Yang D.Y., Han C.H., 1987, A new formulation of generalized velocity field for axisymmetric forward extrusion through arbitrarily curved dies, Transactions of the ASME, Journal of Engineering for Industry, 109, 161-168
- 18. Yang D.Y., Kim Y.G., Lee C.M., 1999, An upper-bound solution for axisymmetric extrusion of composite bars through curved dies, International Journal of Mechanical Sciences, 31, 565-575
- 19. Zimmerman Z., Avitzur B., 1970,Metal flow through conical converging diesa lower upper bound approach using generalized boundaries of the plastic zone, Transactions of the ASME, Journal of Engineering for Industry, 92, 119-129
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16e3e2d1-2160-4a0c-bba7-3a30f7550bfd