PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The development of algorithms for safe control of an autonomous ship

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of a research on the development of algorithms for ship’s safe ship trajectory calculation and automatic control of the ship along the determined trajectory. These methods are intended for use in the autonomous navigation system of an Unmanned Surface Vehicle (USV) or a Maritime Autonomous Surface Ship (MASS). The work presents the consecutive stages of a research that must be carried out in order to develop a system that will perform the task of multidimensional ship control in a port. The safe trajectory is calculated with the use of the Ant Colony Optimization (ACO) method. The ship motion control is based on the Linear Matrix Inequalities (LMI) method, implemented using the Mathworks and Yalmip libraries. The results of controlling the ship’s motion in accordance with the calculated trajectory are presented in the paper. With the use of the developed system, the ship can move autonomously based on the information from the DGPS system and a gyrocompass. The presented results concerned a computer simulation of maneuvers in the port of the Blue Lady ship from the Foundation for Shipping Safety and Environmental Protection.
Bibliografia
  • [1] K. Zhang, L. Huang, Y. He, B. Wang, J. Chen, Y. Tian, and X. Zhao, “A real-time multi-ship collision avoidance decision-making system for autonomous ships considering ship motion uncertainty,” Ocean Engineering, vol. 278, p. 114205, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0029801823005899
  • [2] D. Kim, J.-S. Kim, J.-H. Kim, and N.-K. Im, “Development of ship collision avoidance system and sea trial test for autonomous ship,” Ocean Engineering, vol. 266, p. 113120, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0029801822024039
  • [3] D.-H. Chun, M.-I. Roh, H.-W. Lee, and D. Yu, “Method for collision avoidance based on deep reinforcement learning with path-speed control for an autonomous ship,” International Journal of Naval Architecture and Ocean Engineering, vol. 16, p. 100579, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2092678223000687
  • [4] M. Zheng, S. Xie, X. Chu, T. Zhu, and G. Tian, “Research on autonomous collision avoidance of merchant ship based on inverse reinforcement learning,” International Journal of Advanced Robotic Systems, vol. 17, no. 6, p. 1729881420969081, 2020. [Online]. Available: https://doi.org/10.1177/1729881420969081
  • [5] G. Wei and W. Kuo, “Colregs-compliant multi-ship collision avoidance based on multi-agent reinforcement learning technique,” Journal of Marine Science and Engineering, vol. 10, no. 10, 2022. [Online]. Available: https://www.mdpi.com/2077-1312/10/10/1431
  • [6] J. Lisowski and M. Mohamed-Seghir, “Comparison of computational intelligence methods based on fuzzy sets and game theory in the synthesis of safe ship control based on information from a radar arpa system,” Remote Sensing, vol. 11, no. 1, 2019. [Online]. Available: https://www.mdpi.com/2072-4292/11/1/82
  • [7] M. Mohamed-Seghir, “The fuzzy properties of the ship control in colli-sion situations,” in 2017 IEEE International Conference on Innovations in Intelligent SysTems and Applications (INISTA), 2017, pp. 107-112.
  • [8] S. Xie, X. Chu, M. Zheng, and C. Liu, “Ship predictive collision avoid-ance method based on an improved beetle antennae search algorithm,” Ocean Engineering, vol. 192, p. 106542, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0029801819306766
  • [9] M. Li, B. Li, Z. Qi, J. Li, and J. Wu, “Optimized apf-aco algorithm for ship collision avoidance and path planning,” Journal of Marine Science and Engineering, vol. 11, no. 6, 2023. [Online]. Available: https://www.mdpi.com/2077-1312/11/6/1177
  • [10] T. Zubowicz, K. Armi´nski, A. Witkowska, and R. Śmierzchalski, “Marine autonomous surface ship - control system configuration,” IFAC-PapersOnLine, vol. 52, no. 8, pp. 409-415, 2019, 10th IFAC Symposium on Intelligent Autonomous Vehicles IAV 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2405896319304343
  • [11] W. Koznowski, K. Kula, A. Lazarowska, J. Lisowski, A. Miller, A. Rak, M. Rybczak, M. Mohamed-Seghir, and M. Tomera, “Research on synthesis of multi-layer intelligent system for optimal and safe control of marine autonomous object,” Electronics, vol. 12, no. 15, 2023. [Online]. Available: https://www.mdpi.com/2079-9292/12/15/3299
  • [12] J. Park, M. Kang, Y. Lee, J. Jung, H.-T. Choi, and J. Choi, “Multiple autonomous surface vehicles for autonomous cooperative navigation tasks in a marine environment: Development and preliminary field tests,” IEEE Access, vol. 11, pp. 36 203-36 217, 2023.
  • [13] M. Tomera, “Dynamic positioning system design for ”blue lady”. simulation tests,” Polish Maritime Research, vol. 19, no. Special, pp. 57-65, 2012.
  • [14] ——, “Hybrid real-time way-point controller for ships,” in 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR), 2016, pp. 630-635.
  • [15] J. Pomirski, A. Rak, and W. Gierusz, “Control system for trials on material ship model,” Polish Maritime Research, vol. 19, no. Special, pp. 25-30, 2012. [Online]. Available: https://doi.org/10.2478/v10012-012-0019-1
  • [16] W. Gierusz, N. Cong Vinh, and A. Rak, “Maneuvering control and trajectory tracking of very large crude carrier,” Ocean Engineering, vol. 34, no. 7, pp. 932-945, 2007. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0029801806001831
  • [17] W. Gierusz, “Simulation model of the shiphandling training boat ”blue lady”,” IFAC Proceedings Volumes, vol. 34, no. 7, pp. 255-260, 2001, iFAC Conference on Control Applications in Marine Systems 2001, Glasgow, Scotland, 18-20 July 2001. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1474667017350929
  • [18] M. Rybczak and W. Gierusz, “Maritime autonomous surface ships in use with lmi and overriding trajectory controller,” Applied Sciences, vol. 12, no. 19, 2022. [Online]. Available: https://www.mdpi.com/2076-3417/12/19/9927
  • [19] H.-H. Y. Guang-Ren Duan, LMIs in Control Systems: Analysis, Design and Applications. Boca Raton, FL, USA: CRC Press, 2013. [20] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory. SIAM studies in applied mathematics: 15, 1994.
  • [21] M. Rybczak, “Improvement of control precision for ship movement using a multidimensional controller,” Automatika, vol. 59, pp. 63-70, 2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:116052877
  • [22] Yalmpi library. [Online]. Available: https://yalmip.github.io/download
  • [23] J. F. Sturm, “Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones,” Optimization Methods and Software, vol. 11, no. 1-4, pp. 625-653, 1999. [Online]. Available: https://doi.org/10.1080/10556789908805766
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
2. This work was supported by the grants No. WE/2024/PZ/02 and WE/2024/PZ/03, financed from the internal science fund of the Faculty of Electrical Engineering, Gdynia Maritime University
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16d65fb9-c117-4caf-8400-f8346e82919c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.