PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quaternion-based filtering for gyroless attitude estimation without an attitude dynamics model

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Conventionally, the filtering technique for attitude estimation is performed using gyros or attitude dynamics models. In order to extend the application range of an attitude filter, this paper proposes a quaternion-based filtering framework for gyroless attitude estimation without an attitude dynamics model. The attitude estimation system is established based on a quaternion kinematic equation and vector observation models. The angular velocity in the system is determined through observation vectors from attitude sensors and the statistical properties of the angular velocity error are analysed. A Kalman filter is applied to estimate the attitude error such that the effect from the angular velocity error is compensated with its statistical properties at each sampling moment. A numerical simulation example is presented to illustrate the performance of the proposed algorithm.
Rocznik
Strony
631--643
Opis fizyczny
Bibliogr. 25 poz., rys., wykr., wzory
Twórcy
autor
  • Tsinghua University, Department of Precision Instrument, Beijing 100084, China
autor
  • Tsinghua University, State Key Laboratory of Precision Measurement Technology and Instrument, Beijing 100084, China
autor
  • Tsinghua University, Department of Precision Instrument, Beijing 100084, China
autor
  • Tsinghua University, Department of Precision Instrument, Beijing 100084, China
Bibliografia
  • [1] Savage, P.G. (1998). Strapdown inertial navigation integration algorithm design part 1: attitude algorithms. J. Guid. Control Dyn., 21(1), 19-28.
  • [2] Barshan, B., Durrant-Whyte, H.F. (1995). Inertial navigation systems for mobile robots. IEEE Trans. Robot. Autom., 11(3), 328-342.
  • [3] Zhang, S., Xing, F., Sun, T., You, Z., Wei, M. (2018). Novel approach to improve the attitude update rate of a star tracker. Opt. Express, 26(5), 5164-5181.
  • [4] Wei, M., Xing, F., You, Z. (2018). A real-time detection and positioning method for small and weak targets using a 1D morphology-based approach in 2D images. Light: Sci. Appl., DOI: 10.1038/lsa.2018.6.
  • [5] Lefferts, E.J., Markley, F.L., Shuster, M.D. (1982). Kalman Filtering for spacecraft attitude estimation. J. Guid. Control Dyn., 5(5), 417-429.
  • [6] Crassidis, J.L., Markley, F.L., Cheng, Y. (2007). Survey of nonlinear attitude estimation methods. J. Guid. Control Dyn., 30(1), 12-28.
  • [7] Wahba, G. (1965). A least squares estimate of spacecraft attitude. SIAM Rev., 7(3), 409.
  • [8] Mortari, D. (1997). A closed-form solution to the Wahba problem. J. Astronaut. Sci., 45(2), 195-204.
  • [9] Markley, F.L. (2003). Attitude error representations for Kalman filtering. J. Guid. Control Dyn., 26(2), 311-317.
  • [10] Crassidis, J.L., Markley, F.L. (2003). Unscented filtering for spacecraft attitude estimation. J. Guid. Control Dyn., 26(4), 536-542.
  • [11] Paluszek, M.A., Mueller, J.B., Littman, M.G. (2010). Optical navigation system. Proc., AIAA Infotech at Aerospace Conf., Atlanta, 19-33.
  • [12] Andrle, M.S., Crassidis, J.L. (2015). Attitude estimation Employing common frame error representations. J. Guid. Control Dyn., 38(9), 1614-1624.
  • [13] Chang, L., Qin, F., Zha, F. (2016). Pseudo open-loop unscented quaternion estimator for attitude estimation. IEEE Sens. J., 16(11), 4460-4469.
  • [14] Wang, X., You, Z., Zhao, K. (2016). Inertial/Celestical-based fuzzy adaptive unscented Kalman filter with covariance intersection algorithm for satellite attitude determination. Aerosp. Sci. Technol., 48, 214-222.
  • [15] Taille de La, L., Gmerek, P., Thieuw, A. (2000). Design of one gyro AOCS for the ERS-2 extended mission. Proc., 4th ESA International Conf., Paris, 27-34.
  • [16] Hajiyev, C., Cilden, D., Somov, Y. (2016). Gyro-free attitude and rate estimation for a small satellite using SVD and EKF. Aerosp. Sci. Technol., 55, 324-331.
  • [17] Hajiyev, C., Cilden, D., Somov, Y. (2015). Gyroless attitude and rate estimation of small satellites using singular value decomposition and extended Kalman filter. Proc. IEEE International Carpathian Control Conf., Hungary, 159-164.
  • [18] Ma, H., Xu, S. (2014). Magnetometer-only attitude and angular velocity filtering estimation for attitude changing spacecraft. Acta Astronaut., 102, 89-102.
  • [19] Zhang, L., Qian, S., Zhang, S., Cai, H. (2016). Federated nonlinear predictive filtering for the gyroless attitude determination system. Adv. Space Res., 58, 1671-1681.
  • [20] Xia, K., Huo, W. (2016). Robust adaptive backstepping neural networks control for spacecraft rendezvous and docking with uncertainties. Nonlinear Dyn., 84(3), 1683-1695.
  • [21] Beigelman, L., Gurfil, P. (2008). Optimal fuel-balanced impulsive formationkeeping for perturbed spacecraft orbits. J. Guid. Control Dyn., 31(5), 1266-1283.
  • [22] Liu, H., Yang, J., Yi, W., Wang, J., Yang, J., Li, X., Tan, J. (2012). Angular velocity estimation from measurement vectors of star tracker. Appl. Optics , 51(16), 3590-3598.
  • [23] Grewal, M.S., Shiva, M. (1995). Application of Kalman filtering to gyroless attitude determination and control system for environmental satellites. Proc., 34th IEEE Decision & Control Conf., New Orleans, 1544-1552.
  • [24] Markley, F.L., Crassidis, J.L. (2014). Fundamentals of Spacecraft Attitude Determination and Control. New York: Springer.
  • [25] Shuster, M.D. (1990). Kalman filtering of spacecraft attitude and the QUEST model. J. Astronaut. Sci., 38(3), 377-393.
Uwagi
EN
1. This work was supported by the Natural Science Foundation of China (grant # 61377012 and 51522505), by the Key Research and Development Program of China (grant # 2016YFB0501201), and by the Postdoctoral Science Foundation of China (grant # 2017M610882).
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16d2f1cd-4e36-450b-8059-36aee95ed814
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.