PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A Method for Segmenting FLIR Images of Maritime Objects Based on Visual Perception

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Metoda segmentacji obrazów FLIR obiektów morskich oparta na percepcji wzrokowej
Języki publikacji
EN
Abstrakty
EN
In this paper, a modified adaptive grayscale image segmentation method based on human psychovisual phenomena (VPS) is proposed. This method generates a binarization threshold for each pixel separately. Compared to the0classical VPS method, the use of a pixel observation model in the form of concentric circles is proposed. In the final part of the paper, this method was applied to segment preprocessed FLIR (forward looking infra-red) images of maritime objects. The results obtained by this method were compared with the segmentation results of the same images by the Otsu method using mathematical criteria. The study confirmed better segmentation performance using the modified VPS method.
PL
W artykule zaproponowano zmodyfikowaną adaptacyjną metodę segmentacji obrazów w skali szarości opartą na zjawiskach psychowizualnych człowieka (VPS). Metoda ta generuje próg binaryzacji dla każdego piksela osobno. W porównaniu do klasycznej metody VPS zaproponowano zastosowanie modelu obserwacji pikseli w postaci koncentrycznych okręgów. W końcowej części artykułu metoda ta została zastosowana do segmentacji wstępnie przetworzonych obrazów FLIR (forward looking infra-red) obiektów morskich. Wyniki uzyskane tą metodą zostały porównane z wynikami segmentacji tych samych obrazów metodą Otsu przy użyciu kryteriów matematycznych. Badanie potwierdziło lepszą wydajność segmentacji przy użyciu zmodyfikowanej metody VPS.
Rocznik
Strony
17--35
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Military University of Technology, Faculty of Electronics, Institute of Radioelectronics, 2 gen. S. Kaliskiego St., 00-908 Warsaw, Poland
Bibliografia
  • [1] Jouan A., Valin P., Bossé É., Concepts of data/information fusion for naval C2 and airborne ISR platforms, Technical Memorandum DRDC-Valcartier-TR-2004-284, Defence R&D Canada - Valcartier: Valcartier QUE Canada, 2006. https://cradpdf.drdc-rddc.gc.ca/PDFS/unc329/p526650_A1b.pdf [accessed: 6.02.2022].
  • [2] Pietkiewicz T., A method of recognition of maritime objects based on FLIR (forward looking infra-red) sensor images using dynamic time warping, [in:] Proceedings of SPIE SECURITY + DEFENCE Conference, Warsaw, Poland, 11-14 September 2017, Proceedings SPIE vol. 10434, Electro-Optical Remote Sensing XI; 1043409 (2017), https://doi.org/10.1117/12.2278419.
  • [3] Pietkiewicz T., Sikorska-Łukasiewicz K., Comparison of two classifiers based on neural networks and the DTW method of comparing time series to recognize maritime objects upon FLIR images, [in:] Proceedings of SPIE 11055, XII Conference on Reconnaissance and Electronic Warfare Systems, Ołtarzew, Poland, 19-21 November 2018; Proceedings of SPIE vol. 11055, 110550V (2019), https://doi.org/10.1117/12.2524918.
  • [4] Zhang Y. J., An Overview of Image and Video Segmentation in the Last 40 Years, [in:] Advances in image and video segmentation, Y. J. Zhang, ed., IRM Press: London, 2006, pp. 1-15.
  • [5] Zhao C., A Modified Visual Perception-Based Image Segmentation Method, [in:] Future Intelligent Information Systems. Lecture Notes in Electrical Engineering, D. Zeng ed., Springer, Berlin, Heidelberg, vol. 86, 2011, pp. 311-316.
  • [6] Zhang Y. J., Handbook of Image Engineering, 1st ed., Springer Nature, Singapore, 2021, pp. 901-1010.
  • [7] Otsu N., A threshold selection method from gray-level histograms, IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, issue 1, 1979, pp. 62-66, https://doi.org/10.1109/TSMC.1979.4310076.
  • [8] Basir O., Zhu H., Karray F., Fuzzy Based Image Segmentation. [in:] Fuzzy Filters for Image Processing. Studies in Fuzziness and Soft Computing, M. Nachtegael, D. Van der Weken, E. E. Kerre, D. Van De Ville Eds., Springer: Berlin, Heidelberg, vol. 122, 2003, pp. 101-128, https://doi.org/doi.org/10.1007/978-3-540-36420-7_5.
  • [9] Forero-Vargas M. G., Fuzzy Thresholding and Histogram Analysis, [in:] Fuzzy Filters for Image Processing, Studies in Fuzziness and Soft Computing, M. Nachtegael, D. Van der Weken, E. E. Kerre, D. Van De Ville, eds., Springer: Berlin, Heidelberg, vol. 122, 2003, pp. 129-152, https://doi.org/10.1007/978-3-540-36420-7_6.
  • [10] Sesadri U., Nagaraju C., Image segmentation based on fuzzy genetic algorithm, International Journal of Engineering and Technology, vol. 8, issue 4, 2016, pp. 1642-1649, https://doi.org/10.21817/ijet/2016/v8i4/160804404.
  • [11] Gu D., Ren Z., Image Threshold Segmentation Technology Research Based on Adaptive Genetic Algorithm, [in:] Electrical Power Systems and Computers. Lecture Notes in Electrical Engineering, X. Wan, ed, Springer, Berlin, Heidelberg, vol. 99, 2011, https://doi.org/10.1007/978-3-642-21747-0_16.
  • [12] Wang Z., Wang Y., Jiang L., Zhang C., Wang P., An image segmentation method using automatic threshold based on improved genetic selecting algorithm, Automatic Control and Computer Sciences, vol. 99, 2016, pp. 432-440, https://doi.org/10.3103/S0146411616060092.
  • [13] Sultana F., Sufian A., Dutta P., Evolution of Image Segmentation using Deep Convolutional Neural Network: A Survey, Knowledge-Based Systems, vol. 201-202, 2020, https://doi.org/10.1016/j.knosys.2020.106062.
  • [14] Minaee S., Boykov Y., Porikli F., Plaza A., Kehtarnavaz N., Terzopoulos D., Image Segmentation Using Deep Learning: A Survey, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, https://doi.org/10.1109/TPAMI.2021.3059968.
  • [15] Kundu M. K., Pal S. K., Tresholding for edge detection using human psychovisual phenomena, Pattern Recognition Letters, vol. 4, issue 6, 1986, pp. 433-441, https://doi.org/10.1016/0167-8655(86)90041-3.
  • [16] Kundu M. K., Pal S. K., Edge detection based on human visual response, International Journal of Systems Science, vol. 19, issue 12, 2020, pp. 2523-2542, https://doi.org/10.1080/00207728808547130.
  • [17] Belkacem-Bousaid K., Beghdadi A., Depoisot H., Edge detection using Holladay’s principle, Proc. IEEE Int. Conf. Image Processing, vol. 1, 1996, pp. 833-836.
  • [18] Belkacem-Bousaid K., Beghdadi A., Depoisot H., A New Image Smoothing Method Based on a Simple Model of Spatial Processing in the Early Stages of Human Vision, IEEE Transactions on Image Processing, vol. 9, issue 2, 2000, pp. 220-226.
  • [19] Heucke L., Knaak M., Orglmeister R., A new image segmentation method based on human brightness perception and foveal adaptation, IEEE Signal Processing Letters, vol. 7, issue 6, 2000, pp. 129-131, https://doi.org/10.1109/97.844629.
  • [20] Mokrane A., A new image contrast enhancement technique based on a contrast discrimination model, CVGIP Graphical Models and Image Processing, vol. 54, issue 2, 1992, pp. 171-180.
  • [21] Li Z., Liu C., Zhao C., Cheng Y., An Image Thresholding Method Based on Human Visual Perception, [in:] Proceedings of 2009 2nd International Congress on Image and Signal Processing, Tianjin, China, 17-19 October 2009, https://doi.org/10.1109/CISP.2009.5302884.
  • [22] Moon P., Spencer D. E., The specification of foveale adaptation, J. Opt. Soc. Am., vol. 33, 1942, pp. 444-456.
  • [23] Mittal A., Moorthy A. K., Bovik A. C., No-Reference Image Quality Assessment in the Spatial Domain, IEEE Transactions on Image Processing, vol. 21, issue 12, 2012, pp. 4695-4708, https://doi.org/10.1109/TIP.2012.2214050.
  • [24] Mittal A., Soundararajan R., Bovik A. C., Making a Completely Blind Image Quality Analyzer, IEEE Signal Processing Letters, vol. 22, issue 3, 2013, pp. 209-212, https://doi.org/10.1109/LSP.2012.2227726.
  • [25] Venkatanath N., Praneeth D., Chandrasekhar BH. M., Channappayya S., Medasani S. S., Blind Image Quality Evaluation Using Perception Based Features, [in:] Proceedings of the 21st National Conference on Communications (NCC), Mumbai, India, 27 Feb. - 1 March 2015, https://doi.org/10.1109/NCC.2015.7084843.
  • [26] Zhang H., Fritts J. E., Goldman S. A., Image segmentation evaluation: A survey of unsupervised methods, Computer Vision and Image Understanding, vol. 110, issue 2, 2008, pp. 260-280, https://doi.org/10.1016/j.cviu.2007.08.003.
  • [27] Zhou W., Bovik A. C., Sheikh H. R., Simoncelli E. P., Image Quality Assessment: From Error Visibility to Structural Similarity, IEEE Transactions on Image Processing, vol. 13, issue 4, 2004, pp. 600-612, https://10.1109/TIP.2003.819861.
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
2. This work was financed by the Military University of Technology under Research Project UGB 736.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16cb2780-b52b-45ae-aaed-bdcb2c00849f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.