PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Load bearing capacity of lateral loaded piles in watered Carpathian flysch

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Pale obciążone poziomo w nawodnionym fliszu karpackim
Języki publikacji
EN
Abstrakty
EN
In this paper, flysch is presented as a representative material of a wide section of the Carpathian Mountains, with some areas in Poland highlighted. The geological structure of this area is complex due to the alternating layers of blocky rock masses and soil (Vessia et al., 2017). Such a complex pattern is seen in some Alpine flysch slopes, such as the Ingelsberg landslide area (Romeo et al., 2015). Many authors are monitored, predicted landslides (Allasia et al., 2013; Bertacchini et al., 2009; Casagli et al., 2010) by sophisticated sensors. The rock-soil flysch successions have become intensively fissured as a result of their geological history, weathering (precipitation and snowmelt), and long-term water retention, especially on the surface layers. These complex materials are characterised by heterogeneous lithologies, whose mechanical properties are largely uncertain. These geological structures have also been confirmed by monitoring and control studies performed on a large number of landslides (Bednarczyk, 2014). One of the most striking phenomena is the sudden decrease in the strength parameters in the studied rocks in the direction parallel to the layers due to watering. The process is made possible by heterogeneous fractured strong rock layers with high permeability coefficients for water. This study precisely describes the phenomena occurring at the contact area between the component layers of flysch under the wet conditions of a weak plane. An elastic-plastic analysis method that considers the developed strength model at the surfaces of the contact areas (Biernatowski & Pula, 1988; Pula, 1997) has been used to estimate the load capacity for piles working under a horizontal load. The piles are part of a reliability chain (Pula, 1997) in a given construction and are the first element of concern for monitoring (Muszynski & Rybak, 2017). A particular device intended to study the dependence of the shear stress on a fixed failure surface in a controlled consolidation condition was utilized. The study was conducted for a wide range of displacements and for different values of stabilized vertical stresses of consolidation. The complexity of the processes occurring in the shear zone, presented as a detailed study of the material crack mechanics, is highlighted. The laboratory results were used to construct the mechanical model of the slip surface between the soil and rock with the description supported by a neural network (NN) approximation. The artificial NN was created as a multi-layered, easy to use approach for interpreting results and for quick reconstruction of approximated values useful for the calculations presented in laterally loaded piles. For the calculations, long, sheared strips of material were considered in a semi-analytical procedure to solve a differential equation of stability. The calculations are intended to reveal the safety indexes for a wide range of boundary tasks as the most significant indicator for design decisions.
PL
Flisz karpacki jest formacją występującą na znacznym obszarze Europy Środkowej, stwarza znaczne zagrożenie podczas nawodnienia np. przez infiltrację wody deszczowej lub awarię drenażu. Dla opisu zniszczenia tego materiału o regularnej strukturze z naprzemiennie ułożonych warstw słabych i mocnych, przedstawiono model. Jest to dogodna do zastosowania koncepcja, zaprezentowana w zadaniu stateczności poziomo obciążonych pali. Model można stosować dla szerokiego zakresu skłonu warstw jak i sposobu powiązania głowic pali z oczepem. Ważnym elementem pracy jest opis powierzchni poślizgu między warstwami z zastosowaniem wyników badań laboratoryjnych na próbkach gruntów zarówno sztucznie wytworzonych, jak i pobranych z osuwisk. Badania przeprowadzono w zmodyfikowanym obrotowym aparacie bezpośredniego ścinania. Przykłady obliczeniowe ilustrują procedury modelowania dla słabych skał wraz z ich interpretacją.
Rocznik
Strony
947--962
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
  • Wroclaw University of Science and Technology Wyb. Stanislawa Wyspianskiego 27, 50-370 Wroclaw, Poland
autor
  • Department of Civil and Geomatics Engineering, Kathmandu University, Dhulikhel 45200, Nepal
  • Department of Civil and Geomatics Engineering, Kathmandu University, Dhulikhel 45200, Nepal
Bibliografia
  • [1] Allasia P., Manconi A., Giordan D., Baldo M., Lollino G., 2013. A New Approach for Near-Real-Time Monitoring of Surface Displacements in Landslide Hazard Scenarios. Sensors 13, 8285-8302.
  • [2] Barton N.R., 1974. A review of the shear strength of filled discontinuities in rock. Norwegian Geotech. Inst. Publ. No. 105. Oslo: Norwegian Geotech. Inst.
  • [3] Barton N.R., 1986. Deformation phenomena in jointed rock. Geotechnique 36 (2), 147-167.
  • [4] Bednarczyk Z., 2014. Landslide geohazard monitoring, early warning and stabilization control methods. Studia Geotechnica et Mechanica 36 (1), 3-13.
  • [5] Bertacchini E., Capitani A., Capra A., Castagnetti C., Corsini A., 2009. Integrated surveying system for landslide monitoring, Valoria landslide (Apennines of Modena, Italy). Proceedings of FIG Working Week 2009. Eilat, Israel. ISBN 978-87-90907-73-0.
  • [6] Bhat D.R., Yatabe R., Bhandari N.P. 2014. Slow Shearing Rates’ Effect on Residual Strength of Landslide Soils. Geotechnical Special Publication 236, 293-303.
  • [7] Bhat D.R., Yatabe R., Bhandary N.P., 2013. Study of preexisting shear surfaces of reactivated landslides from a strength recovery perspective. Journal of Asian Earth Sciences 77, 243-253.
  • [8] Biernatowski K., Puła W., 1988. Probabilistic analysis of the stability of massive bridge abutments using simulation methods. Structural Safety 5 (11), 1-15.
  • [9] Broniatowska M., Gaszyński J., 2006. Strength tests of the Carpathian flysch rocks in the region of the constructed water reservoir Świnna Poręba. ZSMG XXIX (english abstract).
  • [10] Casagli N., Catani F., Del Ventisette C., Luzi G. 2010. Monitoring, prediction, and early warning using ground-based radar interferometry. Landslides 7, 291-301.
  • [11] Chowaniec J., Wójcik A., Mrozek T., Rączkowski W., Nescieruk P., Perski Z., Wojciechowski T., Marciniec P., Zimnal Z., Granoszewski W., 2012. Osuwiska w województwie małopolskim. Atlas – przewodnik. Departament Środowiska, Rolnictwa i Geodezji Urzędu Marszałkowskiego Województwa Małopolskiego, Zespół Geologii, pp. 143. (in Polish).
  • [12] Collins B.D., Baum R.L., Mrozek T., Nescieruk P., Perski Z., Rączkowski W., Graniczny M., 2011. Evaluation of Landslide Monitoring in the Polish Carpathians. Open File Report.
  • [13] Dzulynski S., Ksiazkiewicz M., Kuenen P., 1959. Turbidites in flysch of the polish carpathian mountains. Bulletin of the Geological Society of America 70 (8), 1089-1118.
  • [14] Hillier S., 2006. Appendix A. Mineralogical and chemical data. in GM Reeves, I Sims, and JC Cripps eds., Clay materials used in construction: London, Geological Society, Engineering Geology Special Publications 21, 449-459.
  • [15] Hoek E., Brown E., 1980. Underground excavations in rock. The Institution of Mining and Metallurgy, London, UK.
  • [16] Jaeger J.C., Cook N.G., Zimmerman R.W., 2007. Fundamentals of Rock Mechanics. 4th ed. Oxford: Blackwell.
  • [17] Kim B.H., Kaiser P.K., Grasselli G., 2007. Influence of persistence on behaviour of fractured rock masses. Geol. Soc. Lond. Special Publications 284, 161-173.
  • [18] Kiszka K., 2016. Dendrochronological study of the Sawicki landslide activity in the Beskid Niski Mts (Polish Flysch Carpathians). Landform Analysis 32, 9-26, doi: 10.12657/landfana.032.002.
  • [19] Kozubal J., Puła W., Wyjadłowski M., Bauer J., 2013. Influence of varying soil properties on evaluation of pile reliability under lateral loads. Journal of Civil Engineering and Management 19 (2), 272-284.
  • [20] Margielewski W., Pánek T., Tábořík P., Urban J., Hradecký J., Szura C., 2010. Gravitationally induced caves and Rother discontinuities detected by 2D electrical resistivity tomography: Case studies from the Polish Flysch Carpathians. Geomorphology 123, 165-180.
  • [21] Muszyński Z., Rybak J., 2017. Horizontal Displacement Control in Course of Lateral Loading of a Pile in a Slope. IOP Publishing Ltd IOP Conference Series: Materials Science and Engineering 245, 1-8.
  • [22] Puła W., 1997. Reliability analysis of rigid piles subjected to lateral loads. Numerical models in geomechanics. NUMOG VI. Proceedings of the Sixth International Symposium on Numerical Models in Geomechanics, Montreal, Eds S. Pietruszczak, G.N. Pande. Rotterdam, A.A.Balkema, 521-526.
  • [23] Rączkowski W., 2004. Landslide Hazard in the Carpathians during the recent 10 years. Global Change 10, 67-76.
  • [24] Romeo S., Kieffer D.S., Matteo L., 2015. Reliability of GBInSAR Monitoring in Ingelsberg Landslide Area (Bad Hofgastein, Austria). Geotechnical Safety and Risk V,T. Schweckendiek et al. (Eds.). IOS Press. doi:10.3233/978-1-61499-580-7-803.
  • [25] Shaw D.B., Weaver C.E., 1965. The mineralogical composition of shales. J. Sed. Pet. 35, 213-222.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16ca2be9-dcc6-4e0d-9d2c-ef2485adf3ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.