PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Energy management strategy for a hybrid power system for ocean engineering vessels based on an improved particle swarm optimisation algorithm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The maritime industry, a major contributor to carbon emissions, is under increasing environmental pressure due to global climate change. This study presents an innovative energy management strategy for hybrid power systems in ocean engineering vessels, based on an improved particle swarm optimisation algorithm. We convert the traditional powered vessel Marine Oil 257 to a hybrid model, and explore the energy storage requirements, system configurations, and control methods for a practical implementation. Post-conversion, the main diesel engine drives the propeller, and is supported by a lithium iron phosphate battery energy storage system in conjunction with the diesel engine and shaft generators to achieve certain energy efficiency and emission reduction goals. In our strategy, the shaft power of the main engine and the active power of the shaft generator are employed as decision variables, and the ship power balance, operational speed limits, generator output constraints, and system reliability are taken into consideration. Real-time optimisation of energy allocation is performed using an improved particle swarm optimisation algorithm in MATLAB. The effectiveness of this approach is validated through a comparative analysis with full-scale experimental data, and it is shown to be a practical pathway for retrofitting traditional power vessels to enhance the energy efficiency and for providing valuable insights for technological advancement.
Rocznik
Tom
Strony
100--110
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • Merchant Marine College, Shanghai Maritime University, China
  • Merchant Marine College, Shanghai Maritime University, China
autor
  • Department of Mechanical and Automotive Engineering, NingBo University of Technology, Ningbo, China
Bibliografia
  • 1. Fan A et al. Decarbonising inland ship power system: Alternative solution and assessment method. Energy 2021, 226, 120266. https://doi.org/10.1016/j.energy.2021.120266.
  • 2. Zeng X et al. A data-driven intelligent energy efficiency management system for ships. IEEE Intelligent Transportation Systems Magazine 2022, 15(1), 270-284. https://doi.org/10.1109/MITS.2022.3153491.
  • 3. Joung T-H et al. The IMO initial strategy for reducing greenhouse gas (GHG) emissions, and its follow-up actions towards 2050. Journal of International Maritime Safety, Environmental Affairs, and Shipping 2020, 4(1), 1-7. https://doi.org/10.1080/25725084.2019.1707938.
  • 4. Zhang C et al. Technical requirements for 2023 IMO GHG strategy. Sustainability 2024, 16(7), 2766. https://doi.org/10.3390/su16072766.
  • 5. Perera LP, Mo B. Emission control based energy efficiency measures in ship operations. Applied Ocean Research 2016, 60, 29-46. https://doi.org/10.1016/j.apor.2016.08.006.
  • 6. Sun X et al. Optimal control of transient processes in marine hybrid propulsion systems: Modeling, optimization and performance enhancement. Applied Energy 2022, 321, 119404. https://doi.org/10.1016/j.apenergy.2022.119404.
  • 7. Xiao Z-X et al. Operation control for improving Energy efficiency of shipboard microgrid including bow thrusters and hybrid energy storages. IEEE Transactions on Transportation Electrification 2020, 6(2), 856-868. https://doi.org/10.1109/TTE.2020.2992735.
  • 8. He Y et al. Two-phase energy efficiency optimisation for ships using parallel hybrid electric propulsion system. Ocean Engineering 2021, 238, 109733. https://doi.org/10.1016/j.oceaneng.2021.109733.
  • 9. Duan M et al. Comprehensive analysis and evaluation of ship energy efficiency practices. Ocean & Coastal Management 2023, 231, 106397. https://doi.org/10.1016/j.ocecoaman.2022.106397.
  • 10. Yan X, He Y, Fan A. Carbon footprint prediction considering the evolution of alternative fuels and cargo: A case study of Yangtze river ships. Renewable and Sustainable Energy Reviews 2023, 173, 113068. https://doi.org/10.1016/j.rser.2022.113068.
  • 11. Yan G et al. A Convolutional neural network-based method of inverter fault diagnosis in a ship’s DC electrical system. Polish Maritime Research 2022, 29(4), 105-114. https://doi.org/10.2478/pomr-2022-0048.
  • 12. Kunicka M. Optimisation of the Energy Consumption of a Small Passenger Ferry with Hybrid Propulsion. Polish Maritime Research 2024, 31(2), 77-82. https://doi.org/10.2478/pomr-2024-0023.
  • 13. Fang S et al. Multi-source energy management of Maritime grids. In Optimization-based energy management for multi-energy maritime grids (pp. 173-183). Springer; 2021. https://doi.org/10.1007/978-981-33-6734-0_8.
  • 14. Derollepott R, Vinot E. Sizing of a combined series-parallel hybrid architecture for river ship application using genetic algorithm and optimal energy management. Mathematics and Computers in Simulation 2019, 158, 248-263. https://doi.org/10.1016/j.matcom.2018.09.012.
  • 15. Hein K. Emission-aware and data-driven many-objective voyage and energy management optimization of solarintegrated all-electric ship. Electric Power Systems Research 2022, 213, 108718. https://doi.org/10.1016/j.epsr.2022.108718.
  • 16. Chen L, Gao D, Xue Q. Energy management strategy for hybrid power ships based on nonlinear model predictive control. International Journal of Electrical Power & Energy Systems 2023, 153, 109319. https://doi.org/10.1016/j.ijepes.2023.109319.
  • 17. Yuan Y et al. Optimizing energy management strategies for hybrid electric ships based on condition identification and model predictive control. International Journal of Green Energy 2023, 20(15), 1763-1775. https://doi.org/10.1080/15435075.2023.2194376.
  • 18. Hasanvand S et al. Reliable power scheduling of an emissionfree ship: Multiobjective deep reinforcement learning. IEEE Transactions on Transportation Electrification 2020, 6(2), 832-843. https://doi.org/10.1109/TTE.2020.2983247.
  • 19. Xiao H et al. Ship energy scheduling with DQN-CE algorithm combining bi-directional LSTM and attention mechanism. Applied Energy 2023, 347, 121378. https://doi.org/10.1016/j.apenergy.2023.121378.
  • 20. Yang R et al. An ameliorative whale optimization algorithm (AWOA) for HES energy management strategy optimization. Regional Studies in Marine Science 2021, 48, 102033. https://doi.org/10.1016/j.regstud.2021.102033.
  • 21. Peng X, Chen H, Guan C. Energy management optimization of fuel cell hybrid ship based on particle swarm optimization algorithm. Energies 2023, 16(3), 1373. https://doi.org/10.3390/en16031373.
  • 22. Sholedolu MO. Nature-inspired optimisation: Improvements to the particle swarm optimization algorithm and the bees algorithm. Cardiff University; 2009.
  • 23. Do V D et al. Jacking and energy consumption control over network for jack-up rig: Simulation and experiment. Polish Maritime Research 2022, 29(3), 89-98. https://doi.org/10.2478/pomr-2022-0029.
  • 24. Liu L et al. Research on ship energy management strategy based on PSO optimized fuzzy control. Wuhan University Journal 2017, 39(03), 32-37. https://doi.org/10.3963/j.issn.1671-4431.2017.03.006.
  • 25. Yin B, Wang X, Xiao J. Ship energy management scheme based on improved particle swarm optimization algorithm. Chinese Journal of Ship Research 2020, 15(06), 37-45. https://doi.org/10.19693/j.issn.1673-3185.01890.
  • 26. Du W et al. Applying an improved particle swarm optimization algorithm to ship energy saving. Energy 2023, 263, 126080. https://doi.org/10.1016/j.energy.2022.126080.
  • 27. Xiao Y, Zhao Y. Research on improved particle swarm optimization algorithm MPPT control strategy based on chaotic mapping and Gaussian disturbance. Journal of Electrical Engineering 2023, 1-13.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16c52af7-62e0-4ac5-ba05-292e534e5e63
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.