PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Potential of Irrigation and Biochar on Reduction Methane Emission and Leaching Nitrate into Groundwater

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Agricultural by-products such as rice husks are very popular in Vietnam, which are often burned in the fields, causing an increase in dust smoke and greenhouse gas (GHG) emissions. To study the effects of different irrigation methods, quality of irrigation water and additive biochar from rice husk (BFRH) on leaching nitrate from paddy fields into shallow groundwater and methane (CH4) emissions, we investigated a two-season experiment (2021–2023) under two irrigation methods: water-saving irrigation and flood irrigation with 120 kg N/ha. The results illustrated that seasonal CH4 emissions and leaching nitrate were affected by irrigation practices and significantly correlated with the quality of irrigation and the amount of BFRH added. To compare of control, the flood irrigation water increased the leaching of GHG and NO3- into shallow groundwater from 27.3–32.4% and 16.4–31.25%, respectively. Meanwhile, the saving water irrigation reduced CH4 and leaching of NO3- into shallow groundwater from 13.3–17.8% and 15.63–18.9%, respectively. Applying biochar with controlling fertilizer reduces CH4 and NO3- content in surface field water, contributing to the decreased leaching of NO3- into groundwater. Reducing 20% fertilizer rate of N (96 kg N/ha) with application biochar of 5% without a change in yield reduces NO3- content into shallow groundwater from 13.7–14.3%. We conclude that water-saving irrigation combined with biochar from rice husk incorporation simultaneously mitigates CH4 emissions, improves yield, and reduces leaching nitrate into groundwater, making it a suitable environment-friendly nitrogen management practice for sustainable farming in northern Vietnam.
Rocznik
Strony
350--367
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
  • Thuyloi University, 175 Tay Son, Dong Da, Hanoi, Vietnam
  • Thuyloi University, 175 Tay Son, Dong Da, Hanoi, Vietnam
  • University of Fire Prevention and Fighting, 243 Khuat Duy Tien str. Thanh Xuan, Ha Noi, Vietnam
  • Thuyloi University, 175 Tay Son, Dong Da, Hanoi, Vietnam
  • Vietnam National University of Agriculture, Trau Quy town, Gia Lam district, Hanoi, Vietnam
autor
  • Thuyloi University, 175 Tay Son, Dong Da, Hanoi, Vietnam
Bibliografia
  • 1. Abdikani Abdullahi Mo’allim, Md Rowshon Kamal, Hadi Hamaaziz Muhammed, Mohd Amin Mohd Soom, Mohamed Azwan B. Mohamed Zawawi, Aimrun Wayayok and Hasfalina bt. Che Man 2018. Assessment of nutrient leaching in flooded paddy rice field experiment using Hydrus-1D, Water, 10, 785. https://doi.org/10.3390/w10060785
  • 2. Arjen de Groot, G., Laros, I., Geisen, S. 2016. Molecular identification of soil eukaryotes and focused approaches targeting protist and faunal groups using high-throughput metabarcoding. In Microbial Environmental Genomics (MEG); Martin, F., Uroz, S., Eds.; Springer: New York, NY, USA; pp. 125–140.
  • 3. Bijay-Singh, Craswell E. 2021. Fertilizers and nitrate pollution of surface and ground water: an increasingly pervasive global problem. SN Applied Sciences, 3, 518, https://doi.org/10.1007/ s42452-021-04521-8
  • 4. Cerro I., Antigüedad I., Srinavasan R., Sauvage S., Volk M., SanchezPerez J.M. 2014. Simulating land management options to reduce nitrate pollution in an agricultural watershed dominated by an alluvial aquifer. J Environ Qual 43:67–74. https:// doi.org/10.2134/jeq2011.0393
  • 5. Chen X., Strokal M., Kroeze C., Supit I., Wang M., Ma L., Chen X., Shi X. 2020. Modelling the contribution of crops to nitrogen pollution in the Yangtze River. Environ Sci Tech 54, 11929–11939. https:// doi.org/10.1021/acs.est. 0c01333
  • 6. Chen, L., Liu, X., Hua, Z. 2021. Comparison of nitrogen loss weight in ammonia volatilization, runoff, and leaching between common and slow-release fertilizer in paddy field. Water Air Soil Pollut 232, 132. https://doi.org/10.1007/ s11270-021-05083-6
  • 7. Chiwetalu, U.F.U., Asoiro, S., Eslamian, E.A., Echiegu, M., Okechukwu, E., Ndulue, I.O. 2022. Groundwater Quality Appraisal for Drinking and the Associated Health Implications: A Medical Hydrogeology Study of Enugu Metropolis, South-Eastern, Nigeria, Semantic Scholar. Int. J. Hydrol. Sci.
  • 8. Said-Pullicino D., Cucu M.A., Sodano M., Birk J.J., Glaser B., Celi L.. 2014. Nitrogen immobilization in paddy soils as affected by redox conditions and rice straw incorporation, Geoderma, 228–229, 4453. https://doi.org/10.1016/j.geoderma.2013.06.020
  • 9. Diep Thi Pham, Hang Nga Thi Nguyen, Loc Van Nguyen, On Viet Tran, Anh Viet Nguyen, Lan Phuong Thi Dinh., Nguyen Van Vu. 2020. Sandy soil reclamation using biochar and clay-rich soil, J. Ecol. Eng. 2021; 22(6): 26–35. https://doi. org/10.12911/22998993/137445
  • 10. Gai X., Wang H., Liu J., Zhai L., Liu S., Ren T., Liu H. 2014. Efects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PLoS ONE 9(12):e113888. https://doi. org/10.1371/journal.pone.0113888
  • 11. Gu, X., Weng, S., Li, Y., Zhou X. 2022. Effects of water and fertilizer management practices on methane emissions from paddy soils: Synthesis and perspective. Int. J. Environ. Res. Public Health, 19, 7324. https://doi.org/10.3390/ijerph19127324.
  • 12. Frick H., Oberson A., Frossard E., Bünemann E.K. 2022. Leached nitrate under fertilised loamy soil originates mainly from mineralisation of soil organic N. Agriculture, Ecosystems and Environment, 338, 108093, https://doi.org/10.1016/j. agee.2022.108093
  • 13. Huang T., Ju XT., Yang H. 2017. Nitrate leaching in a winter wheat–summer maize rotation on a calcareous soil as affected by nitrogen and straw management. Sci Rep. 7:42247. https://doi.org/10.1038/ srep4 2247
  • 14. Jankowski K., Neill C., Davidson E.A., Macedo M.N., Costa C., Galford G.L., Santos LM., Lefebvre P., Nunes D., Cerri CE., McHorney R. 2018. Deep soils modify environmental consequences of increased nitrogen fertilizer use in intensifying Amazon agriculture. Sci Rep 8, 13478. https://doi. org/10.1038/s41598-018-31175-1
  • 15. Ju X.T., Zhang C. 2017. Nitrogen cycling and environmental impacts in upland agricultural soils in North China: a review. J Integr Agric. 16: 2848–2862. https://doi.org/10.1016/S2095-3119(17)61743-X
  • 16. Ju X.T., Kou CL., Zhang FS., Christie P. 2006. Nitrogen balance and groundwater nitrate contamination: comparison among three intensive cropping systems on the North China Plain. Environ Pollut. 143: 117125. https://doi.org/10.1016/j.envpol.2005.11.005
  • 17. Lan, P.D.T., Nguyen, H.T., Thi, K.V., Phi N.Q. 2023. Insights into the remediation of cadmiumcontaminated vegetable soil: Co-application of low-cost by-products and microorganism. Water Air Soil Pollut 234, 293. https://doi.org/10.1007/ s11270-023-06300-0
  • 18. Li, J., Li, Y., Wan, Y., Wang, B., Waqas, M.A., Cai, W., Guo, C., Zhou, S., Su, R., Qin, X. 2018. Combination of modified nitrogen fertilizers and water saving irrigation can reduce greenhouse gas emissions and increase rice yield. Geoderma, 315, 1–10.
  • 19. Liu Q., Zhang Y., Liu B., Amonette JE., Lin Z., Liu G., Ambus P., Xie Z. 2018. How does biochar infuence soil N cycle? A metaanalysis. Plant Soil 426:211225. https://doi.org/10.1007/ s11104-018-3619-4
  • 20. Mai, V.T., Van Keulen, H., Roetter, R. 2010. Nitrogen leaching in intensive cropping systems in Tam Duong District, Red River Delta of Vietnam. Water Air Soil Pollut, 210, 15–31. https://doi.org/10.1007/ s11270-009-0219-1
  • 21. Konneh M., et al. 2021. Adsorption and desorption of nutrients from abattoir wastewater: modelling and comparison of rice, coconut, and coffee husk biochar, Heliyon, https://doi.org/10.1016/j.heliyon.2021.e08458
  • 22. Latifaha O., Ahmed O.H., Abdul Majid N.M. 2017. Nhancing nitrogen availability, ammonium adsorption-desorption,and soil ph buffering capacity using composted paddy husk. Eurasian Soil Science, 50(12), pp. 1–11. https://doi.org/10.1134/ S1064229317130038
  • 23. Phuong D.T.L., Hoa N.T., Nga N.T.H. 2020. Impact of irrigation techniques on rice yield and dynamics of zinc in plants and soil. Plant Soil Environ., 66, 135–142. https://doi.org/10.17221/660/2019-PSE
  • 24. Preetha P.P, Al-Hamdan A.Z, 2020. Developing nitrate-nitrogen transport models using remotelysensed geospatial data of soil moisture profiles and wet depositions. J Environ Sci Health Part A. 55, 615628. https://doi.org/10.1080/10934529.2020.17245
  • 25. Qin, H., Quan, Z., Yuan, H. 2014. Response of ammonium-oxidizing (amoa) and nitrate-reducing (narg) gene abundances in groundwater to land use change. Water Air Soil Pollut 225, 1908. https://doi. org/10.1007/s11270-014-1908-y
  • 26. Rivett, M.O., Ellis P.A., Mackay R. 2011. Urban groundwater baseflow influence upon inorganic river-water quality: the river tame headwaters catchment in the City of Birmingham, UK, J. Hydrol., 400, 206–222. https:// doi.org/10.1016/j.jhydrol.2011.01.036.
  • 27. Shukla S., Saxena A. 2018. Global status of nitrate contamination in groundwater: its occurrence, health impacts, and mitigation measures. In: Hussain CM (Ed.) Handbook of environmental materials management. Springer, pp 869–888. https://doi. org/10. 1007/978-3-319-58538-3-20-1
  • 28. Shufeng Chen, Chengchun Sun, Wenliang Wu, and Changhong Sun, 2017. Water leakage and nitrate leaching characteristics in the winter wheat–summer maize rotation system in the north China plain under different irrigation and fertilization management practices, Water 2017, 9, 141; https://doi. org/10.3390/w9020141.
  • 29. Smith P., Reay D. and Smith J. 2021. Agricultural methane emissions and the potential formitigation. Phil. Trans. R. Soc. A.3792020045120200451 http://doi.org/10.1098/rsta.2020.0451
  • 30. Tirol-Padre, A., Tran, D.H., Hoang, T.N., Duong, V.H.,Tran, T.N., Le, V.A., Ngo, D.M., Wassmann, R., Sander, B.O. 2017. Measuring GHG emissions from rice production in Quang Nam province (Central Vietnam): emission factor for different landscape and water management practices. In: Land Use and Climate Change Interactions in Central Vietnam; Alexandra, N., Lars, R., Eds.; Springer: Singapore, 103–122.
  • 31. Vo Thi Minh Thao, Nguyen Thi Canh, Nguyen Lu Nguyet Hang, Nguyen Minh Khanh, Nguyen Ngoc Phi, Pham Thi Ai Niem, Tran Tuan Anh, Nguyen Thi Hanh Nguyen, Nguyen Tan Duc 2021. Adsorption of ammonium, nitrite, and nitrate onto rice husk biochar for nitrogen removal. Ho Chi Minh City Open University Journal of Science, 11(1), 30. https://doi. org/10.46223/HCMCOUJS.tech.en.11.1.1622.2021
  • 32. Vu, K.T., Dinh Thi Lan, P., Nguyen, N.T.H., Thanh, H.N. 2022. Cadmium immobilization in the rice - paddy soil with biochar additive. Journal of Ecological Engineering, 23(4), 85–95. https://doi. org/10.12911/22998993/146331
  • 33. Wang Y, Ying H, Yin Y, Zheng H, Cui Z. 2019. Estimating soil nitrate leaching of nitrogen fertilizer from global meta-analysis. Sci Total Environ 657, 96–102. https://doi.org/10. 1016/j. scitotenv.2018.12.029
  • 34. World Health Organization. 2019. Food and Agriculture Organization of the United Nations. Safety and Quality of Water Used in Food Production and Processing: Meeting Report; Microbiological Risk Assessment Series, 33; World Health Organization: Geneva, Switzerland.
  • 35. Wu Q., Xia G., Chen T., Chi D., Jin Y., Sun D. 2016. Impacts of nitrogen and zeolite managements on yield and physicochemical properties of rice grain. Int J. Agric. Biol. Eng., 9(5), 93–100. https://doi. org/10.3965/j.ijabe.20160905.2535
  • 36. Xiyun Jiao, Arkin Maimaitiyiming, Mohamed Khaled Salahou, Kaihua Liu and Weihua Guo 2017. Impact of groundwater level on nitrate nitrogen accumulation in the vadose zone beneath a cotton field, Water, 9, 171. https://doi.org/10.3390/ w9030171
  • 37. Xu, J., Jia, Z., Lin, X., Feng, Y. 2017. DNA-based stable isotope probing identifies formate-metabolizing methanogenic archaea in paddy soil. Microbiol. Res., 202, 36–42.
  • 38. Zhao RF., Chen XP., Zhang FS., Zhang HL., Schroder J., Romheld V 2006. Fertilization and nitrogen balance in a wheat–maize rotation system in North China. Agron J 98, 938–945. https://doi. org/10.2134/agron j2005.0157
  • 39. Zhao, B.-Z., Zhang, J.-B., Flury, M., Zhu, A.-N., Jiang, Q.-A., Bi, J.-W. 2007. Groundwater contamination with NO3-N in a wheat-corn cropping system in the North China Plain. Pedosphere, 17, 721–731.
  • 40. Zhao, X., Wang, J., Wang, S., Xing, G. 2014. Successive straw biochar application as a strategy to sequester carbon and improve fertility: A pot experiment with two rice/wheat rotations in paddy soil. Plant Soil 378, 279–294.
  • 41. Wang Z.-H., Li S-X. 2019. Nitrate N loss by leaching and surface runoff in agricultural land: A global issue (a review), Advances in Agronomy, 156, https://doi.org/10.1016/bs.agron.2019.01.007
  • 42. Zhou, J., Gu, B., Schlesinger, W.H., Ju, X. 2016. Significant accumulation of nitrate in Chinese semihumid croplands. Sci. Rep. Uk 6 (25088). https:// doi.org/10.1038/srep25088.
  • 43. Zhou M., Butterbach-Bahl K. 2014. Assessment of nitrate leaching loss on a yield-scaled basis from maize and wheat cropping systems. Plant Soil 374, 977991. https://doi.org/10.1007/s11104-013-1876-9
  • 44. Zhou J.Y., Gu B.J., Schlesinger W.H., Ju X.T. 2016. Significant accumulation of nitrate in Chinese semihumid croplands. Sci Rep 6, 25088. https://doi. org/10.1038/srep2508817
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16c185b9-49c7-4cea-a551-6de740cecced
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.