Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Easy-to-handle and effective methods of juice clarification and concentration by membrane technologies are still under exploration. The current article presents results of research on the technological development of an alternative natural sweetener of high biological value and improved organoleptic properties. Sorghum saccharatum stem juice is used in research. It is pre-clarified enzymatically with α-amylase and glucoamylase, clarified by ultrafiltration, and concentrated by the direct contact membrane distillation in various temperature ranges. The study shows the efficacy of membrane methods for improving juice purity, total soluble solids (TSS), and total sugar (TS) content in the syrup obtained. Clarification depends on membrane characteristics at the beginning of the process, as there are no differences at the end of it. Juice concentration at high-temperature differences allows to accelerate the process by approx. 60% comparing to low-temperature differences. A lower temperature difference (∆Т = 20-30°С) in the concentration process results in a longer process and syrup acidisation, whereas a higher temperature difference (∆Т = 70°С) affects physicochemical properties of syrup due to local overheating and formation of Maillard reaction products. The juice concentration at ∆Т = 50-60°С allows to obtain high values of total soluble solids without significant degradation of physicochemical and organoleptic properties.
Wydawca
Czasopismo
Rocznik
Tom
Strony
131--137
Opis fizyczny
Bibliogr. 30 poz., rys., wykr.
Twórcy
autor
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
- National University of Kyiv-Mohyla Academy, Kyiv, Ukraine
autor
- National University of Kyiv-Mohyla Academy, Kyiv, Ukraine
autor
- Institute of Bioenergy Crops and Sugar Beet of the NAAS of Ukraine, Kyiv, Ukraine
autor
- National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
autor
- Institute of Technology and Life Sciences – National Research Institute, Ave. Hrabska, 3, 05-090, Falenty, Poland
Bibliografia
- ARUNA C., VISARADA K.B.R.S. 2018. Other industrial uses of sorghum. In: Breeding sorghum for diverse end uses. Eds. C. Aruna, K.B.R. S. Visarada, V.A. Tonapi p. 271–292. DOI 10.1016/B978-0-08-101879-8.00017-6.
- AU-YEUNG F., ZURBAU A., KHAN T., BLANCO MEJIA S., LIU Q., AYOUB-CHARETTE S., ..., SIEVENPIPER J. 2018. Important food sources of fructose-containing sugars and cardiovascular outcomes: A systematic review and meta-analysis of prospective cohort studies. Canadian Journal of Cardiology. Vol. 34(10) p. S25–S26. DOI 10.1016/j.cjca.2018.07.370.
- BAGGER-JØRGENSEN R., MEYER A.S., PINELO M., VARMING C., JONSSON G. 2011. Recovery of volatile fruit juice aroma compounds by membrane technology: Sweeping gas versus vacuum membrane distillation. Innovative Food Science and Emerging Technologies. Vol. 12(3) p. 388–397. DOI 10.1016/j.ifset.2011.02.005.
- BAHÇECI K.S., AKILLIOĞLU H.G., GÖKMEN V. 2015. Osmotic and membrane distillation for the concentration of tomato juice: Effects on quality and safety characteristics. Innovative Food ,Science and Emerging Technologies. Vol. 31 p. 131–138. DOI 10.1016/j.ifset.2015.07.008.
- BOBOESCU I.Z., DAMAY J., CHANG J.K.W., BEIGBEDER J.B., DURET X., BEAUCHEMIN S., LALONDE O., LAVOIE J.M. 2019. Ethanol production from residual lignocellulosic fibers generated through the steam treatment of whole sorghum biomass. Bioresource Technology. Vol. 292, 121975. DOI 10.1016/j.biortech.2019.121975.
- DAR R.A., DAR E.A., KAUR A., GUPTA PHUTELA U. 2018. Sweet sorghum – A promising alternative feedstock for biofuel production. Renewable and Sustainable Energy Reviews. Vol. 82. P. 3p. 4070–4090. DOI 10.1016/j.rser.2017.10.066.
- DEKKER K.D. 1950. The Luff–Schoorl method for determination of reducing sugar in juices, molasses and sugar. South African Sugar Journal. Vol. 34 p. 157–171.
- FAHEED F.A., HASSANEIN A.M., AZOOZ M.M. 2005. Gradual increase in NaCl concentration overcomes inhibition of seed germination due to salinity stress in Sorghum bicolor (L.). Acta Agronomica Hungarica. Vol. 53(2) p. 229–239. DOI 10.1556/AAgr.53 .2005.2.11.
- GUNKO S., VERBYCH S., BRYK M., HILAL N. 2006. Concentration of apple juice using direct contact membrane distillation. Desalination. Vol. 190(1–3) p. 117–124. DOI 10.1016/j.desal.2005.09.001.
- HUSIATYNSKA N., HRYHORENKO N., KALENYK O., HUSIATYNSKYI M., TETERINA S. 2021. Studying the process of extracting sugary substances from the stalks of sweet sorghum in the technology of making food syrups. Eastern-European Journal of Enterprise Technologies. Vol. 4(11(112)) p. 17–24. DOI 10.15587/1729-4061.2021.237785.
- JULIAN H., YAOHANNY F., DEVINA A., PURWADI R., WENTEN I.G. 2020. Apple juice concentration using submerged direct contact membrane distillation (SDCMD). Journal of Food Engineering. Vol. 272, 109807. DOI 10.1016/j.jfoodeng.2019.109807.
- KHAYET M. 2011. Membranes and theoretical modeling of membrane distillation: A review. Advances in Colloid and Interface Science. Vol. 164(1–2) p. 56–88. DOI 10.1016/j.cis.2010.09.005.
- KHYZNIAK O.O., ZAPOLSKYI A.K., NICHIK A.K. 2011. The use of a composition of highly basic coagulant with bactericidal flocculant to obtain high quality water. Food Science and Technology. No. 2 p. 38–41.
- KIM Y.H., KIM S.-B., KIM S.L., PARK S.-W. 2016. Market and trend of alternative sweeteners. Food Science and Industry. Vol. 49(3) p. 17–28. DOI 10.23093/FSI.2016.49.3.17.
- KOO B., PARK J., GONZALEZ R., JAMEEL H., PARK S. 2019. Two-stage autohydrolysis and mechanical treatment to maximize sugar recovery from sweet sorghum bagasse. Bioresource Technology. Vol. 276 p. 140–145. DOI 10.1016/j.biortech.2018.12.112.
- KOZŁOWSKI S., ZIELEWICZ W., POTKAŃSKI A., CIEŚLAK A., SZUMACHER-STRABEL M. 2009. Effect of chemical composition of sugar sorghum and the cultivation technology on its utilisation for silage production. Acta Agronomica Hungarica. Vol. 57(1) p. 67–78. DOI 10.1556/AAgr.57.2009.1.8.
- VAN LANCKER F., ADAMS A., OWCZAREK-FENDOR A., DE MEULENAER B., DE KIMPE N. 2011. Mechanistic insights into furan formation in Maillard model systems. Journal of Agricultural and Food Chemistry. Vol. 59(1) p. 229–235. DOI 10.1021/jf102929u.
- LU Q., PENG Y., ZHU C., PAN S. 2018. Effect of thermal treatment on carotenoids, flavonoids and ascorbic acid in juice of orange cv. Cara Cara. Food Chemistry. Vol. 265 p. 39–48. DOI 10.1016/j.foodchem.2018.05.072.
- MOHAN N., SINGH P. 2020. Sugar and sugar derivatives: Changing consumer preferences. Singapore. Springer. ISBN 978-9811566622 pp. 331. DOI 10.1007/978-981-15-6663-9.
- QTAISHAT M., MATSUURA T., KRUCZEK B., KHAYET M. 2008. Heat and mass transfer analysis in direct contact membrane distillation. Desalination. Vol. 219(1–3) p. 272–292. DOI 10.1016/j.desal.2007.05.019.
- RAKHMETOV D.B., VERGUN O.M., BLUM Y.B., RAKHMETOVA S.O., FISHCHENKO V.V. 2018. Biochemical composition of plant raw material of sweet sorghum (Sorghum saccharatum (L.) Moench) genotype. Plant Introduction. Vol. 79 p. 83–90. DOI 10.5281/zenodo.2278755.
- RATNAVATHI C.V., PATIL J.V., CHAVAN U.D. (eds.) 2016. Sorghum biochemistry: An industrial perspective. Amsterdam Academic Press. ISBN 978-0-12-803157-5 pp. 358. DOI 10.1016/C2014-0-03569-1.
- SARAIVA A., CARRASCOSA C., RAHEEM D., RAMOS F., RAPOSO A. 2020. Natural sweeteners: The relevance of food naturalness for consumers, food security aspects, sustainability and health impacts. International Journal of Environmental Research and Public Health. Vol. 17(17) p. 1–22. DOI 10.3390/ijerph17176285.
- SEOK Y.J., HER J.Y., KIM Y.G., KIM M.Y., JEONG S.Y., KIM M.K., LEE J.Y., KIM C.-I, YOON H.J., LEE K.G. 2015. Furan in thermally processed foods – A review. Toxicological Research. Vol. 31(3) p. 241–253. DOI 10.5487/TR.2015.31.3.241.
- SHISHIR M.R.I., CHEN W. 2017. Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends in Food Science and Technology. Vol. 65 p. 49–67. DOI 10.1016/j.tifs.2017.05.006.
- SWAMINATHAN R. 2011. Inherited metabolic diseases. Handbook of clinical biochemistry. Singapore. World Scientific. ISBN 978-981-283-737-0 pp. 765. DOI 10.1142/7126.
- UMAKANTH A.V., KUMAR A.A., VERMERRIS W., TONAPI V.A. 2018. Sweet sorghum for biofuel industry. In: Breeding sorghum for diverse end uses. Eds. C. Aruna, K.B.R.S. Visarada, B.V. Bhat, V.A. Tonapi. Sawstone. Woodhead Publishing p. 255–270. DOI 10.1016/B978-0-08-101879-8.00016-4.
- VAILLANT F., CISSE M., CHAVERRI M., PEREZ A., DORNIER M., VIQUEZ F., DHUIQUE-MAYER C. 2005. Clarification and concentration of melon juice using membrane processes. Innovative Food Science and Emerging Technologies. Vol. 6(2) p. 213–220. DOI 10.1016/j.ifset.2004.11.004.
- VU T., LE BLANC J., CHOU C.C. 2020. Clarification of sugarcane juice by ultrafiltration membrane: toward the direct production of refined cane sugar. Journal of Food Engineering. Vol. 264, 109682. DOI 10.1016/j.jfoodeng.2019.07.029.
- ZHU Z., MHEMDI H. 2016. Dead end ultra-filtration of sugar beet juice expressed from cold electrically pre-treated slices: Effect of membrane polymer on fouling mechanism and permeate quality. Innovative Food Science and Emerging Technologies. Vol. 36 p. 75–82. DOI 10.1016/j.ifset.2016.05.016.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16c11d6d-3aab-4bd7-b798-d1f521c85036