PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Differentiated service quality analysis based on QoS traffic prioritisation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of a transmission quality study in a network with a DiffServ architecture. The impact of differentiated services based on traffic prioritisation was studied. A carrier network model in a differentiated servicesarchitecture with traffic prioritisation was designed and tested. The operator network used the OSPF protocol, while the client networks communicated using the EIGRP protocol. Different traffic classes in the queueing systems were studied, influencing delay and delay variation. Traffic generated with Exfo FTB-860 test equipment was introduced into the designed network. The measurement equipment used supported the ITUT Y.1564 measurement methodologies. The transmission quality was tested according to the EtherSAM methodology and carried out in bidirectional mode. The tests carried out showed the influence of different data lengths on the quality of transmission in the test network. The results proved that the correct implementation of QoS mechanisms in the network makes it possible to ensure the required quality of service. It was shown that for delay-sensitive traffic which fluctuates beyond its nominal speed, queuing systems allow transmission quality to be achieved with guaranteed bandwidth and delay.
Twórcy
  • University of Life Sciences, Warsaw
Bibliografia
  • [1] M. M. Abualhaj, S. N. Al-Khatib, M. Kolhar, A. Munther, and Y. Alraba’nah, “Effective voice frame pruning method to increase voip call capacity.” TEM Journal, vol. 9, no. 1, 2020. [Online]. Available: https://doi.org/10.18421/TEM91âĂŘ08
  • [2] H. J. Kim and S. G. Choi, “A study on a qos/qoe correlation model for qoe evaluation on iptv service,” in 2010 The 12th International Conference on Advanced Communication Technology (ICACT), vol. 2. IEEE, 2010, pp. 1377-1382. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/5440288
  • [3] G. Miranda, D. F. Macedo, and J. M. Marquez-Barja, “Estimating video on demand qoe from network qos through icmp probes,” IEEE Transactions on Network and Service Management, vol. 19, no. 2, pp. 1890-1902, 2021. [Online]. Available: https://doi.org/10.1109/TNSM.2021.3129610
  • [4] R. Duan, X. Chen, and T. Xing, “A qos architecture for iot,” in 2011 International Conference on Internet of Things and 4th International Conference on Cyber, Physical and Social Computing. IEEE, 2011, pp. 717-720. [Online]. Available: https://doi.org/10.1109/iThings/CPSCom.2011.125
  • [5] H. Rojas, R. Renteria, E. N. Luque, M. Peralta, and J. L. Merma, “Proposal to implement low cost digital communication using voip technology, a case study,” International Journal of Future Computer and Communication, vol. 7, no. 3, pp. 68-73, 2018. [Online]. Available: https://doi.org/doi:10.18178/ijfcc.2018.7.3.523
  • [6] L. Yang, S.-H. Yang, and L. Plotnick, “How the internet of things technology enhances emergency response operations,” Technological Forecasting and Social Change, vol. 80, no. 9, pp. 1854-1867, 2013. [Online]. Available: https://doi.org/10.1016/j.techfore.2012.07.011
  • [7] F. M. Puspita, K. Seman, B. M. Taib, and Z. Shafii, “Improved models of internet charging scheme of single bottleneck link in multi qos networks,” Journal of Applied Sciences, vol. 13, no. 4, pp. 572-579, 2013. [Online]. Available: https://doi.org/10.3923/jas.2013.572.579
  • [8] X. Yuan, H. Yao, J. Wang, T. Mai, and M. Guizani, “Artificial intelligence empowered qos-oriented network association for next-generation mobile networks,” IEEE Transactions on Cognitive Communications and Networking, vol. 7, no. 3, pp. 856-870, 2021. [Online]. Available: https://doi.org/10.1109/TCCN.2021.3065463
  • [9] D. Strzęciwilk, “Examination of transmission quality in the ip multi-protocol label switching corporate networks,” International Journal of Electronics and Telecommunications, vol. 58, no. 3, pp. 267-272, 2012. [Online]. Available: https://doi.org/10.2478/v10177-012-0037-z
  • [10] Y. Deng, H. Lin, A. G. Phadke, S. Shukla, J. S. Thorp, and L. Mili, “Communication network modeling and simulation for wide area measurement applications,” in 2012 IEEE PES Innovative Smart Grid Technologies (ISGT). IEEE, 2012, pp. 1-6. [Online]. Available: https://doi.org/10.1109/ISGT.2012.6175664
  • [11] T. Mazhar, M. A. Malik, S. A. H. Mohsan, Y. Li, I. Haq, S. Ghorashi, F. K. Karim, and S. M. Mostafa, “Quality of service (qos) performance analysis in a traffic engineering model for next-generation wireless sensor networks,” Symmetry, vol. 15, no. 2, p. 513, 2023. [Online]. Available: https://doi.org/10.3390/sym15020513
  • [12] X. Ji, B. Han, C. Xu, C. Song, and J. Su, “Adaptive qos-aware multipath congestion control for live streaming,” Computer Networks, vol. 220, p. 109470, 2023. [Online]. Available: https://doi.org/10.1016/j.comnet.2022.109470
  • [13] D. Strzęciwilk, “Timed petri nets for modeling and performance evaluation of a priority queueing system,” Energies, vol. 16, no. 23, p. 7690, 2023. [Online]. Available: https://doi.org/10.3390/en16237690
  • [14] M. Karakus and A. Durresi, “Quality of service (qos) in software defined networking (sdn): A survey,” Journal of Network and Computer Applications, vol. 80, pp. 200-218, 2017. [Online]. Available: https://doi.org/10.1016/j.jnca.2016.12.019
  • [15] R. Braden, D. Clark, and S. Shenker, “Integrated services in the internet architecture: an overview,” 1994. [Online]. Available: https://www.rfc-editor.org/rfc/rfc1633
  • [16] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “Rfc2475: An architecture for differentiated service,” 1998. [Online]. Available: https://doi.org/10.17487/RFC2475
  • [17] P. Gevros, J. Crowcroft, P. Kirstein, and S. Bhatti, “Congestion control mechanisms and the best effort service model,” IEEE network, vol. 15, no. 3, pp. 16-26, 2001. [Online]. Available: https://doi.org/10.1109/65.923937
  • [18] J. Peng, Communications and Networking. Rijeka: IntechOpen, Sep 2010. [Online]. Available: https://doi.org/10.5772/262
  • [19] D. Strzęciwilk, R. Nafkha, and R. Zawiślak, “Performance analysis of a qos system with wfq queuing using temporal petri nets,” in Computer Information Systems and Industrial Management: 20th International Conference, CISIM 2021, Ełk, Poland, September 24-26, 2021, Proceedings 20. Springer, 2021, pp. 462-476. [Online]. Available: https://doi.org/10.1007/978-3-030-84340-3_38
  • [20] A. Custura, R. Secchi, and G. Fairhurst, “Exploring dscp modification pathologies in the internet,” Computer Communications, vol. 127, pp. 86-94, 2018. [Online]. Available: https://doi.org/10.1016/j.comcom.2018.05.016
  • [21] K. Nichols, S. Blake, F. Baker, and D. Black, “Definition of the differentiated services field (ds field) in the ipv4 and ipv6 headers,” Tech. Rep., 1998. [Online]. Available: https://www.rfc-editor.org/rfc/rfc2474
  • [22] B. Davie, A. Charny, J. Bennet, K. Benson, J.-Y. Le Boudec, W. Courtney, S. Davari, V. Firoiu, and D. Stiliadis, “An expedited forwarding phb (per-hop behavior),” Tech. Rep., 2002. [Online]. Available: https://www.rfc-editor.org/rfc/rfc3246
  • [23] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski, “Assured forwarding phb group,” Tech. Rep., 1999. [Online]. Available: https://www.rfc-editor.org/rfc/rfc2597
  • [24] F. Baker, “Rfc1812: Requirements for ip version 4 routers,” 1995. [Online]. Available: https://dl.acm.org/doi/pdf/10.17487/RFC1812
  • [25] G. Armitage, B. Carpenter, A. Casati, J. Crowcroft, J. Halpern, B. Kumar, and J. Schnizlein, “Rfc3248: A delay bound alternative revision of rfc 2598,” 2002. [Online]. Available: https://doi.org/10.17487/RFC3248
  • [26] L. De Ghein, MPLS fundamentals. Cisco Press, 2016. [Online]. Available: https://elhacker.info/manuales/Redes/Cisco/MPLS/MPLS%20Fundamentals.pdf
  • [27] T. Diallo and M. Dorais, “Ethersam: The new standard in ethernet service testing,” EXFO assessing next-gen networks, pp. 1-12, 2011.
  • [28] T. ITU, “Recommendation g. 114, one-way transmission time,” Series G: Transmission Systems and Media, Digital Systems and Networks, Telecommunication Standardization Sector of ITU, 2000. [Online]. Available: https://www.itu.int/rec/T-REC-G.114
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16bfc567-cd1d-4252-b943-721a26eb5e6d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.