PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detection of disease markers in human breath with laser absorption spectroscopy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Number of trace compounds (called biomarkers), which occur in human breath, provide an information about individual feature of the body, as well as on the state of its health. In this paper we present the results of experiments about detection of certain biomarkers using laser absorption spectroscopy methods of high sensitivity. For NO, OCS, C₂H₆, NH₃, CH₄, CO and CO(CH₃)₂ an analysis of the absorption spectra was performed. The influence of interferents contained in exhaled air was considered. Optimal wavelengths of the detection were found and the solutions of the sensors, as well as the obtained results were presented. For majority of the compounds mentioned above the detection limits applicable for medicine were achieved. The experiments showed that the selected optoelectronic techniques can be applied for screening devices providing early diseases detection.
Twórcy
autor
  • Institute of Experimental Physics, Physics Faculty, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
autor
  • Military University of Technology, ul. Gen. Kaliskiego 2, 00-908 Warsaw, Poland
autor
  • Military University of Technology, ul. Gen. Kaliskiego 2, 00-908 Warsaw, Poland
autor
  • Institute of Experimental Physics, Physics Faculty, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
  • Military University of Technology, ul. Gen. Kaliskiego 2, 00-908 Warsaw, Poland
autor
  • Military University of Technology, ul. Gen. Kaliskiego 2, 00-908 Warsaw, Poland
Bibliografia
  • 1. A. Ulanowska, T. Ligor, M. Michel, and B. Buszewski, “Hyphenated and unconventional methods for searching volatile cancer biomarkers”, Ecol. Chem. Eng. 17(1), 9–23 (2010).
  • 2. T. Ligor, Analityka wydychanego powietrza z zastosowaniem sprzężonych technik chromatograficznych z przeznaczeniem do badań przesiewowych chorób płuc, Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, Toruń, 2011. (IN POLISH)
  • 3. T. Ligor, “Analytical methods for breath investigation”, Crit. Rev. Anal. Chem. 39, 2–12 (2009).
  • 4. B. Buszewski, M. Kesy, T. Ligor, and A. Amann, “Human exhaled air analytics: biomarkers of diseases”, Biomed. Chromatogr. 21, 553–566 (2007).
  • 5. W. Mueller, J. Schubert, A. Benzing, and K. Geiger, “Method for analysis of exhaled air by microwave energy desorption coupled with gas chromatography-flame ionization detection-mass spectrometry”, J. Chromatogr. B 716, 27–38 (1998).
  • 6. P.J. Mazzone, “Exhaled breath volatile organic compound biomarkers in lung cancer”, J. Breath Res. 6, 027106 (2012).
  • 7. A. Ulanowska, E. Trawinska, P. Sawrycki, and B. Buszewski, “Chemotherapy control by breath profile with application of SPME-GC/MS method”, J. Sep. Sci. 35, 2908–2913 (2012).
  • 8. A.W. Boots, J.J.B.N. Van Berkel, J.W. Dallinga, A. Smolinska, E.F. Wouters, and F.J.Van Schoten, “The versatile use of exhaled volatile organic compounds in human health and disease”, J. Breath Res. 6, 027108 (2012).
  • 9. W. Miekisch, J. Herbig, and J.K. Schubert, “Data interpretation in breath biomarker research: pitfalls and directions”, J. Breath Res. 6, 1–10 (2012).
  • 10. I.B. Silva, A.C. Freitas, T.A.P. Rocha-Santos, M.E. Pereira, and A.C. Duarte, “Breath analysis by optical fiber sensor for the determination of exhaled organic compounds with a view to diagnostics”, Talanta 83, 1586–1594 (2011).
  • 11. F.S. Cikach Jr. and R.A. Dweik, “Cardiovascular biomarkers in exhaled breath”, Prog. Cardiovasc. Dis. 55, 34–43 (2012).
  • 12. S. Kumar, J. Huang, J.R. Cushnir, P. Spanel, D. Smith, and G.B. Hanna, “Selected ion flow tubems analysis of headspace vapour from gastric content for the diagnosis of gastro-esopha-geal cancer”, Anal. Chem. 84, 9550–9557 (2012).
  • 13. D. Smith and P. Spanel, “The challenge of breath analysis for clinical diagnosis and therapeutic monitoring”, Analyst 132(5), 390–396 (2007).
  • 14. P.R. Boshier, J.R. Cushnir, and V. Mistry, “Online, real time monitoring of exhaled trace gases by SIFT-MS in the perioperative setting: a feasibility study”, Analyst 136, 3233– 3237 (2011).
  • 15. W. Tianshu, P. Andriy, D. Kseniya, S. Patrik, and S. David, “Analysis of breath, exhaled via the mouth and nose, and the air in the oral cavity”, J. Breath Res. 2, 037013 (2008).
  • 16. P. Čáp, K. Dryahina, F. Pehal, and P. Španel, “Selected ion flow tube mass spectrometry of exhaled breath condensate headspace”, Rapid Commun. Mass Spectrom. 22, 2844–2850 (2008).
  • 17. T.H. Risby and S.F. Solga, “Current status of clinical breath analysis”, Appl. Phys. B 85, 421–426 (2006).
  • 18. S. Kumar, J. Huang, J.R. Cushnir, P. Spanel, D. Smith, and G.B. Hanna, “Selected ion flow tube-ms analysis of headspace vaper from gastric content for the diagnosis of gastro-esopha-geal cancer”. Anal Chem. 84, 9550–7 (2012).
  • 19. F.Di Francesco, R. Fuoco, M.G.Trivella, and A. Ceccarini, “Breath analysis: trends in techniques and clinical applications”, Microchem. J. 79, 405–410 (2005).
  • 20. R.F. Machado, D. Laskowski, O. Deffenderfer, T. Burch, S. Zheng, P.J. Mazzone, T. Mekhail, C. Jennings, J.K. Stoller, J. Pyle, J. Duncan, R.A. Dweik, and S.C. Erzurum, “Detection of lung cancer by sensor array analyses of exhaled breath”, Am. J. Respir. Crit. Care Med. 171, 1286–1291 (2005).
  • 21. B. Buszewski, D. Grzywinski, T. Ligor, T. Stacewicz, Z. Bielecki, and J. Wojtas, “Detection of volatile organic compounds as biomarkers in breath analysis by different analytical techniques”, Bioanalysis 5, 2287–2306 (2013).
  • 22. L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.M. Flaud, R.R. Gamache, J.J. Harrison, J.M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. LeRoy, G. Li, D.A. Long, O. Lyulin, C. Mackie, S.T. Massie, S. Mikhailenko, H.S. Muller, O. Naumenko, A. Nikitin, J. Orphal, V.I. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, Vl.G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database”, J. Quant Spectr. Radiation Transfer 130, 4–50 (2013).
  • 23. https://www.google.pl/search?q=nafion+humidifier&ie=utf-8&oe=utf-8&gws_rd=cr&ei=QrR_Vr-GCsXVyAOgso7wDQ.
  • 24. G. Peach, “Theory of the pressure broadening and shift of spectral lines”, Adv. in Phys. 30 (3): 367–474 (1981).
  • 25. J. Wojtas, Z. Bielecki, T. Stacewicz, J. Mikolajczyk, and M. Nowakowski,“Ultrasensitive laser spectroscopy for breath analysis”, Opt. Electron. Rev. 20, 77–90 (2012).
  • 26. T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikołajczyk, R. Mędrzycki, and B. Rutecka, “Cavity ring down spectroscopy: Detection of trace amounts of matter”, Opt. Electron. Rev. 20, 34–41 (2012).
  • 27. P. Patimisco, G. Scamarcio, F.K. Tittel, and V. Spagnolo, “Quartz-Enhanced Photoacoustic Spectroscopy: a Review”, Sensors 14, 6165–6206 (2014).
  • 28. A.O’ Keefe and D.A.G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources”, Rev. Sci. Instrum. 59, 2544–2551 (1988).
  • 29. K.W. Busch and M.A. Busch, Cavity-ringdown Spectroscopy, an Ultratrace-Absorption Measurement Technique, ACS Symposium series, American Chemical Society, Washington DC, 1999.
  • 30. G. Berden and R. Engeln, Cavity Ring-Down Spectroscopy: Techniques and Applications, Edition, Wiley-Blackwell, 2009.
  • 31. D. Romanini, A.A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW-cavity ring down spectroscopy”, Chem. Phys. Lett. 264, 316–322 (1997).
  • 32. J. Ye, L.S. Ma, and J.L. Hall, “Ultrastable optical frequency reference at 064 μm using a C2HD molecular overtone transition”, IEEE T. Instrumentation and Measurement 46, 178–182 (1997).
  • 33. A. Cygan, D. Lisak, P. Masłowski, K. Bielska, S. Wojtewicz, J. Domysławska, R. Trawiński, R. Ciuryło, H. Abe, and J.T. Hodges, “Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer”, Rev. Sci. Instrum. 82, 063107-1-063107-12 (2011).
  • 34. A. Cygan, S. Wojtewicz, J. Domysławska, P. Masłowski, K. Bielska, M. Piwiński, K. Stec, R. Trawiński, F. Ozimek, C. Radzewicz, H. Abe, T. Ido, J. T. Hodges, D. Lisak, R. and Ciuryło, “Spectral line-shapes investigation with Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectroscopy”, Eur. Phys. J. Spec. Top. 222, 2119–2142 (2013).
  • 35. R. Engeln, G. Berden, R. Peeters, and G. Meier, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy”, Rev. Sci. Instrum. 69, 3763–3769 (1998).
  • 36. J.D. Ayers, R.L. Apodaca, W.R. Simpson, and D.S. Baer, “Off-axis cavity ringdown spectroscopy: application to atmospheric nitrate radical detection”, Appl. Opt. 44, 7239–7242 (2005).
  • 37. S.A. Kharitonov and P.J. Barnes, “Nitric oxide, nitrotyrosine, and nitric oxide modulators in asthma and chronic obstructive pulmonary disease”, Curr. Allergy Asthma Rep. 3, 121–129 (2003).
  • 38. S.A. Kharitonov, A.U. Wells, B.J. O'Connor, P.J. Cole, D.M. Hansell, R.B. Logan-Sinclair, and P.J. Barnes, “Elevated levels of exhaled nitric oxide in bronchiectasis”, Am. J. Respir. Crit. Care Med. 151, 1889–1893 (1995).
  • 39. J. Schilling, P. Holzer, M.Guggenbach, D. Gyurech, K. Marathia, and S. Geroulanos, “Reduced endogenous nitric oxide in the exhaled air of smokers and hypertensives”, Eur. Respir. J. 7, 467–471 (1994).
  • 40. U. Martin, K. Bryden, M. Devoy, and P. Howarth, “Increased levels of exhaled nitric oxide during nasal and oral breathing in subjects with seasonal rhinitis”, J. Allergy Clin. Immunol 97, 768–772 (1996).
  • 41. S.A. Kharitonov and P.J. Barnes, “Nitric oxide in exhaled air is a new marker of airway inflammation”, Monaldi. Arch. Chest Dis. 51, 533–537 (1996).
  • 42. K. McCluskie, M.A. Birrell, S. Wong, and M.G. Belvisi, “Nitric oxide as a noninvasive biomarker of lipopolysaccharide-induced airway inflammation: possible role in lung neutrophilia”, J. Pharmacol. Exp. Ther. 311, 625–633 (2004).
  • 43. M.A. Birrell, K. McCluskie, E. Hardaker, R. Knowles, and M.G. Belvisi, “Utility of exhaled nitric oxide as a noninvasive biomarker of lung inflammation in a disease model”. Eur. Respir. J. 28, 1236–1244 (2006).
  • 44. http://www.thoracic.org/about/overview.php
  • 45. http://www.ersnet.org/images/stories/pdf/ERS_Annual_report_1314.pdf
  • 46. C. Roller, K. Namjou, J.D. Jeffers, M. Camp, A. Mock, P.J. McCann, and J. Grego, “Nitric oxide breath testing by tunable-diode laser absorption spectroscopy: application in monitoring respiratory inflammation”, Appl. Opt. 41, 6018–6029 (2002).
  • 47. K. Namjou, C.B. Roller, and G. McMillen, “Breath analysis using mid infrared tunable laser spectroscopy”, Proc. of the 6th Annual IEEE Conf. on Sensors, Atlanta, GA, USA, pp. 1337–1340, 2007.
  • 48. Y.A. Bakhirkin, A.A. Kosterev, C. Roller, R.F. Curl, and F.K Tittel,. “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection”, Appl. Opt. 43, 2257–2266 (2004).
  • 49. M.R. McCurdy, Y. Bakhirkin, G. Wysocki, and F.K. Tittel, “Performance of an exhaled nitric oxide and carbon dioxide sensor using quantum cascade laser-based integrated cavity output spectroscopy”, J. Biomed. Opt. 12, 034034:1–034034:9 (2007).
  • 50. A.A. Kosterev, A.L. Malinovsky, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, and A.Y. Cho, “Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser”, Appl. Opt. 40, 5522–5529 (2001).
  • 51. K. Heinrich, T. Fritsch, P. Hering, and M. Murtz, “Infrared laser-spectroscopic analysis of 14NO and 15NO in human breath”. Appl. Phys. B: Lasers Opt. 95, 281–286 (2009).
  • 52. L. Ciaffoni, R. P. a. G. A. D. R. (2011). “Laser spectroscopy on volatile sulfur compounds: possibilites for breath analysis”, J. Breath Research 5, 024002 (2011).
  • 53. G. Neri, A. Bonavita, S. Ipsale, G. Micali, G. Rizzo, and N. Donato, “Carbonyl Sulphide (COS) monitoring on MOS sensors for biomedical applications”. ISIE 2007, pp. 2776–2781 (2007).
  • 54. L. Bennett, L. Ciaffoni, W. Denzer, G. Hancock, A.D. Lunn, R. Peverall, S. Praun, and G.A.D. Ritchie, “A chemometric study on human breath mass spectra for biomarker identification in cystic fibrosis”, J. Breath Res. 3, 1–7 (2009).
  • 55. D. Halmer, G. von Basum, P. Hering, and M. Murtz, “Mid-infrared cavity leak-out spectroscopy for ultrasensitive detection of carbonyl sulfide”, Opt. Lett. 30, 2314–2316 (2005).
  • 56. C. Fischer and M.W. Sigrist, “Trace gas sensing in the 3.3 μm region using a diode based difference frequency laser photoacoustic system”, Appl. Phys. B: Lasers Opt. 75, 305–310 (2002).
  • 57. S.R. Svedahl, K. Svendsen, E. Tufvesson, P.R. Romundsad, A.K Sjaastad, T. Qvenild, and B. Hilt, “Inflammatory markers in blood and exhaled air after short-term exposure to cooking fumes”, The Annals of Occupational Hygiene 57, 230–239 (2012).
  • 58. R. Matthew Y.B. McCurdy, G. Wysocki, R. Lewicki, and F.K. Tittle. “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis”, J. Breath Res. 1, 014001 (2007).
  • 59. M. Refat, T.J. Moore, M. Kazui, T.H. Risby, J.A. Perman, and K.B. Schwarz, “Utility of breath ethane as a noninvasive biomarker of vitamin E status in children”, Pediatr. Res. 30, 396–403 (1991).
  • 60. C.A. Riely, G. Cohen, and M. Lieberman, “Ethane evolution: a new index of lipid peroxidation”, Science 183, 208–210 (1974).
  • 61. G.D. Lawrence and G. Cohen, “Ethane exhalation as an index of in vivo lipid peroxidation: concentrating ethane from a breath collection chamber”, Anal. Biochem. 122, 283–290 (1982).
  • 62. P. Paredi, S.A. Kharitonov, and P.J. Barnes, “Elevation of exhaled ethane concentration in asthma”, Am. J. Respir. Crit. Care Med. 162, 1450–1454 (2000).
  • 63. C.S. Patterson, L.C. McMillan, K. Stevenson, K. Radhakrishnan, P.G. Shiels, M.J. Padgett, and K.D. Skeldon, “Dynamic study of oxidative stress in renal dialysis patients based on breath ethane measured by optical spectroscopy”, J. Breath Res. 1(2), 026005:1–026005:8 (2007).
  • 64. C. Wang, P. Sahay, “Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits”, Sensors 9, 8230–8262 (2009).
  • 65. D. Halmer, S. Thelen, P. Hering, and M. Murtz, “Online monitoring of ethane traces in exhaled breath with a difference frequency generation spectrometer”, Appl. Phys. B: Lasers Opt. 85, 437–443 (2006).
  • 66. C.J. Wang, S.T. Scherrer, and D. Hossain, “Measurements of cavity ringdown spectroscopy of acetone in the ultraviolet and nearinfrared spectral regions: Potential for development of a breath analyzer”, Appl. Spectroscopy 58, 784–791 (2004).
  • 67. D.J. Kearney, T. Hubbard, and D. Putnam, “Breath ammonia measurement in Helicobacter pylori infection”, Dig. Dis. Sci. 47, 2523–2530 (2002).
  • 68. D. Smith, T. Wang, A. Pysanenko, and P. Spanel, “A selected ion flow tube mass spectrometry study of ammonia in mouth- and nose-exhaled breath and in the oral cavity”, Rapid Commun. Mass Spectrom. 22, 783–789 (2008).
  • 69. J. Manne, O. Sukhorukov, W. Jager, and J. Tulip, “Pulsed quantum cascade laser-based cavity ring-down spectroscopy for ammonia detection in breath”, Appl. Opt. 45, 9230–9237 (2006).
  • 70. J. Manne, W. Jager, and J. Tulip, “Sensitive detection of ammonia and ethylene with a pulsed quantum cascade laser using intra and interpulse spectroscopic techniques”, Appl. Phys. B: Lasers Opt. 94, 337–344 (2009).
  • 71. J. Wojtas, F.K. Tittel, T. Stacewicz, Z. Bielecki, R. Lewicki, J. Mikołajczyk, M. Nowakowski, D. Szabra, P. Stefanski, and J. Tarka, “Cavity enhanced absorption spectroscopy and photoacoustic spectroscopy for human breath analysis”, Int. J. Thermophysics 35, 2215–2225 (2014).
  • 72. M.J. Thorpe, D. Balslev-Clausen, M.S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis”, Opt. Express 16, 2387–2397 (2008).
  • 73. H.J. Vreman, J.J. Mahoney, and D.K. Stevenson, “Carbon monoxide and carboxyhemoglobin”, Adv. Pediatr. 42, 330–334 (1995).
  • 74. D.K. Stevenson and H.J. Vreman, “Carbon monoxide and bilirubin production in neonates”, Pediatr. Rev. 100, 252–259 (1997).
  • 75. L.A. Applegate, P. Luscher, and R.M. Tyrrell, “Induction of heme oxygenase: a general response to oxidant stress in cultured mammalian cells”, Cancer Res. 51, 974–978 (1991).
  • 76. M. Yamaya, K. Sekizawa, S. Ishizuka, M. Monma, K. Mizuta, and H. Sasaki, “Increased carbon monoxide in exhaled air of subjects with upper respiratory tract infections”, Am. J. Respir. Crit. Care Med. 158, 311–314 (1998).
  • 77. K. Zayasu, K. Sekizawa, S. Okinaga, M. Yamaya, T. Ohrui, and H. Sasaki, “Increased carbon monoxide in exhaled air of asthmatic patients”, Am. J. Respir. Crit. Care Med. 156, 1140–1143 (1997).
  • 78. M.J. Thorpe, K.D. Moll, J.R. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection”, Science 311, 1595–1599 (2006).
  • 79. B.W. Moeskops, S.M. Cristescu, and F.J. Harren, “Sub-part-per-billion monitoring of nitric oxide by use of wavelength modulation spectroscopy in combination with a thermoelectrically cooled, continuous-wave quantum cascade laser”, Opt. Lett. 31, 823–825 (2006).
  • 80. K.L. Moskalenko, A.I. Nadezhdinskii, and I.A. Adamovskaya, “Human breath trace gas content study by tunable diode laser spectroscopy technique”, Infrared Phys. Tech. 37, 181–192 (1996).
  • 81. L. Le Marchand, L.R. Wilkens, P. Harwood, and R.V. Cooney, “Use of breath hydrogen and methane as markers of colonic fermentation in epidemiologic studies: circadian patterns of excretion”, Environ. Health Perspect. 98, 199–202 (1992).
  • 82. M. Scotoni, A. Rossi, D. Bassi, R. Buffa, S. Iannotta, and A. Boschetti, “Simultaneous detection of ammonia, methane and ethylene at 1.63 μm with diode laser photoacoustic spectroscopy”, Appl. Phys. B: Lasers Opt. 82, 495–500 (2006).
  • 83. J.C. Anderson, W.J.E. Lamm, and M.P. Hlasatala, “Measuring airway exchange of endogenous acetone using a single-exhalation breathing maneuver”, J. Appl. Physiol. 100, 880–889 (2005).
  • 84. C. Turner, P. Spanel, and D. Smith, “A longitudinal study of ammonia, acetone and propanol in the exhaled breath of 30 subjects using selected ion flow tube mass spectrometry SIFT-MS”, Physiol. Meas. 27, 321–337 (2006).
  • 85. K. Namjou, C.B. Roller, T.E. Reich, J.D. Jeffers, G.L. McMillen, P.J. McCann, and M.A. Camp, “Determination of exhaled nitric oxide distributions in a diverse sample population using tunablediode laser absorption spectroscopy”, Appl. Phys. B: Lasers Opt. 85, 427–435 (2006).
  • 86. K. Musa-Veloso, S.S. Likhodii, E. Rarama, S. Benoit, Y.M.C. Liu, D. Chartrand, R. Curtis, L. Carmant, A. Lortie, F.J.E. Comeau, and S.C. Cunnane, “Breath acetone predicts plasma ketone bodies in children with epilepsy on a ketogenic diet”, Nutrition 22, 1–8 (2006).
  • 87. F. Pabst, W. Miekisch, P. Fuchs, S. Kischkel, and J.K. Schubert, “Monitoring of oxidative and metabolic stress during cardiac surgery by means of breath biomarkers: an observational study”, J. Cardiothorac. Surg. 2, 37 (2007).
  • 88. M. Kupari, J. Lommi, M. Ventila, and U. Karjalainen, “Breath acetone in congestive heart failure”, Am. J. Cardiol. 76, 1076–1078 (1995).
  • 89. C. Wang and A. Mbi, “A new acetone detection device using cavity ringdown spectroscopy at 266 nm: evaluation of the instrument performance using acetone sample solutions”, Meas. Sci. Technol. 18, 2731–2741 (2007).
  • 90. C. Wang, A. Mbi, M. Shepherd, “A study on breath acetone in diabetic patients using a cavity ringdown breath analyzer: exploring correlations of breath acetone with blood glucose and glycohemoglobin A1C”. IEEE. J. Sensors. 10, 54–63 (2010).
  • 91. C. Wang and A.B. Surampudi, “An acetone breath analyser using cavity ringdown spectroscopy: an initial test with human subjects under various situations”. Meas. Sci. Technol. 19, 105604–105614 (2008).
  • 92. F. da Silva, M. Nobre, A. Fernandes, R. Antunes, D. Almeida, G. Garcia, N.J. Mason, and P. Limăo-Vieira, “Spectroscopic studies of ketones as a marker for patients with diabetes”, J. Phys.: Conf. Series 101, 012011/1–7 (2008).
  • 93. B.A. Bodhaine, N.B. Wood, E.G. Dutton, and J.R. Slusser, “On Rayleigh Optical Depth Calculation”, J. Atm. Ocean. Tech. 16, 1854–1861 (1999).
  • 94. Lange's Handbook of Chemistry, Sixteenth Edition, McGraw-Hill Education: New York, Chicago, San Francisco, Lisbon, London, Madrid, Mexico City, 2005.
  • 95. Y. Ma, R. Lewicki, M. Razeghi, and F.K. Tittel, “QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL”, Opt Express. 21, 1008–19 (2013).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16bfbe86-c697-450a-a214-2dee29738273
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.