PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of the impact of jet impingement technique on the energy efficiency of air-cooled BIPV/T roof tile

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper concerns a numerical analysis of cooling of the hybrid photovoltaic (PV) modules dedicated to Building-Integrated Photovoltaic/Thermal (BIPV/T) systems. Attention was focused on the photovoltaic roof tiles, using a jet impingement technique, in which the intensification of heat transfer is ensured by streams of air hitting the heat exchange partition. A series of numerical simulations were carried out to assess an influence of the distance of the nozzle outlet from the absorber surface on the values of selected thermal-hydraulic performance indicators and the electrical parameters of the roof tile. The results confirmed the high effectiveness of the proposed method. The best effect was obtained for the case in which the relative distance of the nozzle from the partition to the nozzle diameter was equal to 1. For the mentioned configuration, an over 4 times increase in the value of the heat transfer coefficient was obtained in relation to the reference variant of cooling roof tiles. At the same time, the relative increase in the value of the generated electrical power was from 2.9 to 7.8%, depending on the value of the Reynolds number characterising the flow.
Rocznik
Strony
5--18
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
  • Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • [1] Choudhury, C., & Garg, H.P. (1991). Evaluation of a jet plate solar air heater. Solar Energy, 46, 199-209. doi: 1016/0038-092X(91)90064-4.
  • [2] Zukowski, M. (2015). Experimental investigations of thermal and flow characteristics of a novel microjet air solar heater. Applied Energy, 142, 10-20. doi: 10.1016/j.apenergy.2014.12.052.
  • [3] Chauhan, R., Singh, T., Thakur, N.S., & Patnaik, A. (2016). Optimization of parameters in solar thermal collector provided with impinging air jets based upon preference selection index method. Renewable Energy, 99, 118-126. doi: 10.1016/j.renene.2016.06.046.
  • [4] Yadav, S., & Saini, R.P. (2020). Numerical investigation on the performance of a solar air heater using jet impingement with absorber plate. Solar Energy, 208, 236-248, doi: 10.1016/j.solener.2020.07.088.
  • [5] Pazarlıoğlu, H.K., Tepe, A.Ü., Tekir, M., & Arslan, K. (2022). Effect of new design of elongated jet hole on thermal efficiency of solar air heater. Therm. Sci. Eng. Prog., 36, 101483. doi:10.1016/j.tsep.2022.101483.
  • [6] Hai, T., B Mansir, I., Alshuraiaan, B., M Abed, A., Elhosiny Ali. H., Dahari M., & Albalawi H. (2023). Numerical investigation on the performance of a solar air heater using inclined impinging jets on absorber plate with parallel and crossing orientation of nozzles. Case Studies in Thermal Engineering, 45, 102913. doi:10.1016/j.csite.2023.102913.
  • [7] Das, S., Biswas, A., & Das, B. (2023). Parametric investigation on the thermo-hydraulic performance of a novel solar air heater design with conical protruded nozzle jet impingement. Applied Thermal Engineering, 219, Part B, 119583. doi: 10.1016/j.applthermaleng.2022.119583.
  • [8] Ewe, W.E., Fudholi, A., Sopian, K., Moshery, R., Asim, N., Nuriana, W., & Ibrahim, A. (2022). Thermo-electro-hydraulic analysis of jet impingement bifacial photovoltaic thermal (JIBPVT) solar air collector. Energy, 254, Part B, 124366. doi: 10.1016/j.energy.2022.124366.
  • [9] Ewe, W.E., Fudholi, A., & Sopian, K.B. (2022). Jet impingement cooling applications in solar energy technologies: Systematic literature review. Thermal Science and Engineering Progress, 34,101445. doi: 10.1016/j.tsep.2022.101445.
  • [10] BMI Brass – Photovoltaic Systems brochure, https://www.monier.pl/produkty/systemy-fotowoltaiczne/energia-elektryczna/braas-pv-premium.html [accessed 16 Oct. 2023].
  • [11] Maithani, R., Sharma, S., & Kumar, A. (2021). Thermo-hydraulic and exergy analysis of inclined impinging jets on absorber plate of solar air heater. Renewable Energy, 179, 84-95. doi:10.1016/j.renene.2021.07.013.
  • [12] Nadda, R., Kumar, A., & Maithani, R. (2017). Developing heat transfer and friction loss in an impingement jets solar air heater with multiple arc protrusion obstacles. Solar Energy, 158, 117-131. doi: 10.1016/j.solener.2017.09.042.
  • [13] Chauhan, R., Thakur, N.S., Singh, T., & Sethi, M. (2018). Exergy based modeling and optimization of solar thermal collector provided with impinging air jets. Journal of King Saud University - Engineering Sciences, 30, 355-362. doi: 10.1016/j.jksues.2016.07.003.
  • [14] ASHRAE Standards Committee. (1997). Methods of testing to determine the thermal performance of solar collectors.https://www.ashrae.org/.
  • [15] McAdams, W.H. (1954). Heat transmission, 3rd Edn. McGrawHill, Tokyo, Japan.
  • [16] Engineering ToolBox (2001). https://www.engineeringtoolbox.com [accessed 06 Apr. 2023].
  • [17] Hernandez-Perez, J.G, Carrillo, J.G., Bassam, A., FlotaBanuelos, M. & Patino-Lopez, L.D. (2021). Thermal performance of a discontinuous finned heatsink profile for PV passive cooling. Applied Thermal Engineering, 184, 116238. doi:10.1016/j.applthermaleng.2020.116238.
  • [18] Leow, W.Z., Irwan, Y.M., Safwati, I., Irwanto, M., Amelia, A.R., Zhubir, N.S., Fahmi, M.I., & Rosle, N. (2020). Simulation study on photovoltaic panel temperature under different solar radiation using computational fluid dynamic method. Journal of Physics: Conference Series. 1432:012052. doi: 10.1088/1742-6596/1432/1/012052.
  • [19] Thomson, A., Ernst, M., Haedrich, I., & Quian, J. (2017). Impact of PV module configuration on energy yield under realistic conditions. Optical and Quantum Electronics, 49, 82. doi:10.1007/s11082-017-0903-0.
  • [20] Shamim, A., Noman, M., Zubair, M., Khan, A.D., & Saher, S. (2018). A facile approach to determine the unknown refractive index (n) and extinction coefficient (k) of novel encapsulant materials used in back contact PV modules. Applied Physics A, 124,542. doi: 10.1007/s00339-018-1974-x.
  • [21] Emissivity factor of common materials. Fluke Corporation, https://www.flukeprocessinstruments.com/en-us/service-andsupport/knowledge-center/infrared-technology/emissivity-metals [accessed: 27 Aug. 2023].
  • [22] Guarracino, I., Mellor, A., Ekins-Daukes, N.J., & Markides, C.
  • (2016). Dynamic coupled thermal-and-electrical modelling of sheet-and-tube hybrid photovoltaic/thermal (PVT) collectors. Applied Thermal Engineering, 101, 778-795. doi: 10.1016/j.applthermaleng.2016.02.056.
  • [23] Hussien, A., Eltayesh, A., & El-Batsh, H.M. (2023). Experimental and numerical investigation for PV cooling by forced convection. Alexandria Engineering Journal, 64, 427-440. doi:10.1016/j.aej.2022.09.006.
  • [24] Tepe, A.Ü., Uysal, Ü., Yetişken, Y., & Arslan, K. (2020). Jet impingement cooling on a rib-roughened surface using extended jet holes. Applied Thermal Engineering, 178, 115601. doi:10.1016/j.applthermaleng.2020.115601.
  • [25] Ansys Fluent Theory Guide, 2023, https://www.ansys.com/
  • [26] Pawlucki, M., & Krys, M. (2020). CFDs for engineers. Practical exercises on the example of the Ansys Fluent system (in Polish), Helion SA, Gliwice, pp. 249-256.
  • [27] Karava, P., Jubayer, C.M., & Savory, E. (2011). Numerical modelling of forced convective heat transfer from the inclined windward roof of an isolated low-rise building with application to photovoltaic/thermal systems. Applied Thermal Engineering, 31, 1950-1963. doi: 10.1016/j.applthermaleng.2011.02.042.
  • [28] Lamaamar, I., Tilioua, A., & Hamdi Alaoui, M. A. (2022). Thermal performance analysis of a poly c-Si PV module under semiarid conditions. Materials Science for Energy Technologies, 5,243-251. doi: 10.1016/j.mset.2022.03.001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16ba5579-ce5d-4c6e-8501-c9848aebeb6e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.