PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comprehensive importance analysis for repairable system components based on the GO method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to effectively improve the reliability level of the permanent magnet synchronous motor (PMSM) drive system of electric aircraft, a component importance analysis based on the GO method for the repairable systems is proposed. Firstly, the system reliability model GO diagram is established according to the hardware schematic diagram of the PMSM drive system. Secondly, the steady-state availability and failure importance of the components are calculated. In addition, the criteria importance through intercriteria correlation (CRITIC) is adopted to determine the objective weights of steady-state availability and failure importance. The combined weighting is employed to obtain the importance of key components. Meanwhile, a system redundancy design based on the importance of components is proposed to provide data support for the design of the system. Finally, the feasibility and effectiveness of the proposed method are evaluated by an example of an electric aircraft PMSM drive system. This method provides a supporting basis for the optimization design of the entire system.
Rocznik
Strony
785--794
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Shenyang Aerospace University, Department of Electronic Information Engineering, Shenyang 110000, Liaoning, China
  • Liaoning General Aviation Academy, Shenyang 110000, Liaoning, China
autor
  • Shenyang Aerospace University, Department of Electronic Information Engineering, Shenyang 110000, Liaoning, China
autor
  • Aero Engine Corporation of China, Shenyang 110000, Liaoning, China
autor
  • Shenyang Aerospace University, Department of Electronic Information Engineering, Shenyang 110000, Liaoning, China
Bibliografia
  • 1. Wang CL, Lv SJ. Continuous time T-S dynamic fault tree importance analysis method. Chinese Journal of Scientific Instrument 2020, 41(09): 232-241, http://doi.org/10.19650/j.cnki.cjsi.J2006516.
  • 2. Cai C, Liu YQ, Zhang Y. Multi-level LSSC system reliability analysis based on go method. Statistics and Decision 2019, 35(12): 75-78, http://doi.org/10.13546/j.cnki.tjyjc.2019.12.018.
  • 3. Chen YZ. Reliability analysis of vulnerable parts in scraper conveyor based on fault tree method. Coal Mining Machinery, 2019, 40(01): 144-145, http://doi.org/10.13436/j.mkjx.201901051.
  • 4. Chen YQ, Xu TX, Li ZQ, Li HJ. Dynamic reliability analysis of complex polymorphic systems based on evidence go method. Systems engineering and electronics 2020, 42(01): 230-237, http://doi.org/10.3969/j.issn.1001-506X.2020.01.31.
  • 5. Fu T, Wang D, Fan XY, Huang QH. Component Importance and Interdependence Analysis for Transmission, Distribution and Communication Systems. CSEE Journal of Power and Energy Systems, vol. 8, no. 2, 488-498, 2022, http://doi.org/10.17775/CSEEJPES.2020.05520.
  • 6. Fan DM, Ren Y, Liu LL, et al. Algorithm based-on dynamic Bayesian networks for repairable GO methodology model. Journal of Beijing University of Aeronautics and Astronautics 2015, 41(11): 2166-2176, http://doi.org/10.13700/j.bh.1001-5965.2014.0767.
  • 7. Gohardani AS, Doulgeris G, Singh R. Challenges of future aircraft propulsion: A review of distributed propulsion technology and its potential application for the all electric commercial aircraft. Progress in Aerospace Sciences 2011, 47(5): 369-391, https://doi.org/10.1016/j.paerosci.2010.09.001.
  • 8. Huang J, Yang FT. Development and challenges of new energy electric aircraft. Acta Aeronautica et Astronautica Sinica 2016, 37 (01): 57-68, https://doi.org/10.7527/S1000-6893.2015.0274.
  • 9. Hu T, Wang D, Sun Y, Huang ZY, Jiang LT. Air combat threat assessment based on improved CRITIC-LRA and grey approximation ideal solution sorting method. Acta Armamentarii 2020, 41(12): 2561-2569, https://doi.org/10.3969/j.issn.1000-1093.2020.12.022.
  • 10. Jia BH, Guo T, Lu X, Li LY. Reliability analysis of typical components of civil aircraft. Aircraft Design 2020, 40(02): 64-68, https://doi.org/10.19555/j.cnki.1673-4599.2020.02.014.
  • 11. Luo CK, Chen YX, He Z, Li Y, Zhang YM. Evaluation method of contribution rate of aviation equipment architecture based on fault tree analysis. Journal of National University of Defense Technology 2021, 43(01): 155-162, https://doi.org/10.11887/j.cn.202101020.
  • 12. Li ZQ, Xu TX, Gu JY, An J, Liu YD. Reliability analysis method of a certain type of missile control system fused with uncertain information. System Engineering and Electronic Technology 2017, 39(12): 2869-2876, https://doi.org/10.3969/j.issn.1001-506X.2017.12.34.
  • 13. Li JK, Wang Y, Wang BM. Reliability of spoiler system of an electric aircraft based on the moment go method. Acta Aeronautica Sinica 2021, 42(03): 62-70, https://doi.org/10.7527/S1000-6893.2020.23945.
  • 14. Ma Z, Zhou HY, Li XQ, He XP. Research on the reliability of electric vehicle electric power steering system based on model-driven architecture. Automotive Technology 2020(12): 36-42, https://doi.org/10.19620/j.cnki.1000-3703.20200057.
  • 15. Miziuła P, Navarro J. Birnbaum Importance Measure for Reliability Systems With Dependent Components. IEEE Transactions on Reliability 2019, vol. 68, no. 2, 439-450, https://doi.org/10.1109/TR.2019.2895400.
  • 16. Nguyen KA, Do P, Grall A. Condition-based maintenance for multi-component systems using importance measure and predictive information. International Journal of Systems Science: Operations& Logistics 2014, 1(4): 228-245, https://doi.org/10.1080/23302674.2014.983582.
  • 17. Peng H, Coit DW, Feng Q. Component Reliability Criticality or Importance Measures for Systems With Degrading Components. IEEE Transactions on Reliability 2012, vol. 61, no. 1, 4-12, https://doi.org/10.1109/TR.2011.2182256.
  • 18. Steiner HJ, Vratny PC, Gologan C, et al. Optimum number of engines for transport aircraft employing electrically powered distributed propulsion. CEAS Aeronautical Journa1 2015, 5(2): 157-170, https://doi.org/10.1007/s13272-013-0096-6.
  • 19. Si SB, Yang L, Cai ZQ, Dui HY. Study on calculation method of comprehensive importance of two-state system components. Journal of Northwestern Polytechnical University 2011, 29(06): 939-947, https://doi.org/ 10.3969/j.issn.1000-2758.2011.06.021.
  • 20. Scherb A, Garre L, Straub D. Evaluating component importance and reliability of power transmission networks subject to windstorms: methodology and application to the nordic grid. Reliability Engineering and System Safety 2019, 191: 106517-106517, https://doi.org/10.1016/j.ress.2019.106517.
  • 21. Shen ZP, Huang XR. GO method principle and application: an analysis method of system reliability. Tsinghua University Press: Beijing, China.
  • 22. Wang Y, Fu SS, Wu B, Huang JH, Wei XY. Towards optimal recovery scheduling for dynamic resilience of networked infrastructure. Journal of Systems Engineering and Electronics 2018, 29(05): 995-1008, https://doi.org/10.21629/JSEE.2018.05.11.
  • 23. Wang XY, Fan QQ. Analysis of the importance of urban rail transit vehicle failure based on FMECA method. Urban Rail Transit Research 2020, 23(07): 121-124. https://doi.org/10.16037/j.1007-869x.2020.07.025.
  • 24. Wang Z, Bao CY. The application of go method in the reliability analysis of YAG laser system. Journal of Tsinghua University (Natural Science Edition) 2007(03): 377-380, https://doi.org/10.3321/j.issn:1000-0054.2007.03.019.
  • 25. Xue CG, Gu Y, Cao WJ, Cao HW. Optimization of opportunistic maintenance strategy for multi-component importance systems. Mechanical Design and Manufacturing 2022(02): 116-119+125, https://doi.org/10.19356/j.cnki.1001-3997.20211116.026.
  • 26. Yang WS, Wang W, Mi GJ, Mao XJ, Yan JX, Zhong GS. Application of go method in reliability analysis of non-water-cooled all-solid-state laser system. Laser and Infrared 2010, 40(05): 479-483, https://doi.org/10.3969/j.issn.1001-5078.2010.05.007.
  • 27. Yao AL, Huang LL, Xu TL. Reliability analysis of gas transmission station based on go method. Acta Petrolei Sinica 2016, 37(05): 688-694, https://doi.org/10.7623/syxb201605013.
  • 28. Zhou K, Ding JY, Chen JY, Tao WW. Reliability and component importance analysis of substation automation system in multi-state mode. Electric Power Components and Systems 2019, 47(6-7): 589-604, https://doi.org/10.1080/15325008.2019.1602686.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16b9d49e-f63a-4362-a5e6-73c9670bfacb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.