PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

P-Impedance and Vp/Vs prediction based on AVO inversion scheme with deep feedforward neural network: a case study from tight sandstone reservoir

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The low-frequency component of seismic data is an inevitable part to obtain absolute P-impedance (Ip) and Vp∕Vs ratio of the subsurface, especially for the reservoir sweet spot. In this work, we train the deep feedforward neural network (DFNN) with band-pass seismic data and well log data to obtain favorable low-frequency components. Specifically, the Bayesian inference strategy is first applied to the pre-stack constrained sparse spike inversion process, obtaining an “initial” inverted band-pass parameters, which are subsequently used as input when applying the DFNN algorithm to predict low- and bandpass parameters. Moreover, the high linear correlation coefficient between the DFNN-based inversion results and the realistic well logging curves of the blind wells demonstrates that the DFNN-based inversion scheme exhibits strong robustness and good generalization ability. Ultimately, we apply the proposed DFNN-based inversion strategy to a tight sandstone reservoir located at the Sichuan basin field from onshore China. Both low- and band-pass Ip and Vp∕Vs inverted for the clastic formation of the Sichuan basin show a strong correlation with the corresponding Ip and Vp∕Vs logs.
Czasopismo
Rocznik
Strony
563--580
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
  • Exploration department of Xinjiang Oilfeld Company, PetroChina, Karamay 834000, China
autor
  • School of Geoscience, China University of Petroleum (East China), Qingdao 266580, China
autor
  • CGG, Beijing 100016, China
autor
  • Research Institute of Petroleum Exploration and Development, Xinjiang Oilfeld Company, PetroChina, Karamay 834000, China
autor
  • Exploration department of Xinjiang Oilfeld Company, PetroChina, Karamay 834000, China
  • CNPC West Drilling Engineering Company Limited, Ürümqi 830011, China
Bibliografia
  • 1. Alfarraj M, AlRegib G (2019) Petrophysical property estimation from seismic data using recurrent neural networks. Available online at: arxiv:1901.08623
  • 2. Araya-Polo M, Jennings J, Adle A, Dahlke T (2018) Deep-learning tomography. Lead Edge 37(1):58–66
  • 3. Ball V, Blangy JP, Schiott C, Chaveste A (2014) Relative rock physics. Lead Edge 33(3):276–286
  • 4. Biswas R, Sen MK, Das V, Mukerji T (2019) Prestack and post stack inversion using a physics-guided convolutional neural network. Interpretation 7(3):SE161–SE174
  • 5. Buland A, Omre H (2003) Bayesian linearized AVO inversion. Geophysics 68:185–198
  • 6. Caers J (2011) Modeling uncertainty in the earth sciences. Wiley, Chichester
  • 7. Connolly P (1999) Elastic impedance. Lead Edge 18(4):438–438
  • 8. Das V, Mukerji T (2020) Petrophysical properties prediction from prestack seismic data using convolutional neural networks. Geophysics 85(5):N41–N55
  • 9. Das V, Pollack A, Wollner U, Mukerji T (2019) Convolutional neural network for seismic impedance inversion. Geophysics 84(6):R869–R880
  • 10. Debeye HWJ, Vanriel P (1990) Lp-Norm deconvolution. Geophys Prosp 38(4):381–403
  • 11. Deutsch CV (2002) Geostatistical reservoir modeling. Oxford University Press, New York
  • 12. Di H, Chen X, Maniar H, Abubakar A (2020) Semi-supervised seismic and well log integration for reservoir property estimation. In: SEG program expanded abstracts, 2166–2170
  • 13. Doyen PM, Guidish TM (1992) Seismic discrimination of lithology: a Monte Carlo approach. In R. E. Sheriff, (ed.), Reservoir geophysics: SEG, 243–250
  • 14. Eidsvik J, Avseth P, Omre H, Mukerji T, Mavko G (2004) Stochastic reservoir characterization using prestack seismic data. Geophysics 69:978–993
  • 15. Eidsvik J, Mukerji T, Bhattacharjya D (2015) Value of information in the earth sciences, (integrating spatial modeling and decision analysis). Cambridge University Press, London
  • 16. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Boston
  • 17. Grana D, Verma S, Pafeng J, Lang X, Sharma H, Wu W, Campbell-Stone E, Ng K, Alvarado V, Mallick S, Kaszuba J (2017) A rock physics and seismic reservoir characterization study of the rock springs uplift, a carbon dioxide sequestration site in Southwestern Wyoming. Int J Greenhouse Gas Control 63:296–309. https://doi.org/10.1016/j.ijggc.2017.06.004
  • 18. Hampson DP, Russel BH (2005) Simultaneous inversion of pre-stack seismic data. In: 75th Annual international meeting, SEG, expanded abstracts 1633–1637
  • 19. Kelly M (2001) AVO inversion, part 1: isolating rock property contrasts. Geophysics 20(3):320
  • 20. Krizhevsky A, Sutskever I, Hinton G (2012) ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25:1097–1105
  • 21. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444. https://doi.org/10.1038/nature14539
  • 22. Li H, Lin J, Wu BH, Gao JH, Liu NH (2021) Elastic properties estimation from prestack seismic data using GGCNNs and application on tight sandstone reservoir characterization. IEEE Trans Geosci Remote Sens 60:1–21
  • 23. Lopez-Moreno I, Gonzalez-Dominguez J, Martinez D (2016) On the use of deep feedforward neural networks for automatic language identification. Comput Speech Lang 40:46
  • 24. Mesdag PR, Marquez D, de Groot L, Aubin V (2010) Updating low frequency model. In: 72nd EAGE conference and exhibition incorporating SPE EUROPEC, Barcelona
  • 25. Monajemi H, Donoho DL, Stodden V (2016) Making massive computational experiments painless: big data, 2368–2373
  • 26. Mukerji T, Jørstad A, Avseth P, Mavko G, Granli JR (2001) Mapping lithofacies and pore-fluid probabilities in a North Sea reservoir: seismic inversions and statistical rock physics. Geophysics 66:988–1001
  • 27. Peters B, Granek J, Haber E (2019) Multi-resolution neural networks for tracking seismic horizons from few training images. Interpretation 7(3):1–54. https://doi.org/10.1190/int-2018-0225.1
  • 28. Richardson A (2018) Seismic full-waveform inversion using deep learning tools and techniques. http://arxiv.org/abs/1801.07232
  • 29. Russell BH, Gray D, Hampson DP (2011) Linearized AVO and poroelasticity. Geophysics 76(3):C19–C29
  • 30. Yuan SY, Wang SX, Luo YE, Wei WW, Wang GC (2019) Impedance inversion by using the low-frequency full-waveform inversion result as an a priori model. Geophysics 84:R149–R164
  • 31. Yuan SY, Jiao XQ, Luo YE, Sang WJ, Wang XS (2021) Double-scale supervised inversion with a data-driven forward model for low-frequency impedance recovery. Geophysics 0:1–102
  • 32. Zheng Y, Zhang Q (2018) Pre-stack seismic inversion using deep learning. In: Presented at 1st EAGE/PESGB workshop on machine learning. Downloaded 07/30/19 to 180.101.128.24
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16b8cf93-b548-493c-a627-32cfff35e04e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.