Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Propensity of cargoes to self-heating is determined by many factors which can be divided into two main types - properties of the cargo and environment/storage conditions. Some agricultural products are susceptible to self-heating which can cause many serious problems during handling, storage and sea transportation of such commodities. Palm kernel shells (PKS) have been shipped in bulk since 2007 but they are not a currently listed cargo in the IMSBC. PKS are a natural by-product of palm oil processing and differ materially from the palm kernel expellers currently regulated by the IMSBC Code. However, their specific characteristics and negative external influences may cause them to behave like a substance from Class 4.2 (Substances liable to spontaneous combustion) or MHB cargo. Due to the importance of spontaneous combustion, particularly with respect to the storage and sea transportation of PKS, an investigation has been conducted.
Rocznik
Tom
Strony
159--163
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
- Gdynia Maritime University, Gdynia, Poland
Bibliografia
- 1 Alengaram, U.J. Mahmud, H. Jumaat M.Z. Shirazi, S.M. 2010. Effect of aggregate size and proportion on strength properties of palm kernel shell concrete. Int J Phys Sci 5(12): 1848‐1856
- 2 Alengaram, U.J. Mahmud, H. Jumaat M.Z. 2010. Comparison of mechanical and bond properties of oil palm kernel concrete with normal weight conctere. Int J Phys Sci 5(8): 1231‐1239
- 3 Alengaram, U.J. Al Muhit, B.A. Jumaat, M. Z. 2013. Utilization of oil palm kernel shell as lightweight aggregate in concrete – A review. Construction and Building Materials 38: 161‐172
- 4 Dhillon, R.S. von Wuehlisch, G. 2013. Mitigation of global warming through renewable biomass. Biomass and Bioenergy 48: 75‐89.
- 5 Ekong, C.E. 2013. Determination of water absorption rate of palm kernel shells as an alternative pore agents in insulating refractory bricks. Journal of African studies 2:34‐39.
- 6 He, M. Hu, Z. Hiao, B. Li, J. Gou, H. Luo, S. 2009. Hydrogen‐reach gas from catalytic steam gasification of municipal solid waste: Influence of catalyst and temperature on yield and product composition. International Journal of Hydrogen Energy 34:195‐20
- 7 Hosseini, S.E. Wahid, A.W. Aghili, N. 2013. The scenario of greenhouses reduction in Malaysia. Renewable Sustainable Energy Rev 28:400‐409.
- 8 IMO. 2015. International Maritime Solid Bulk Cargoes Code. London.
- 9 Jones, J.C. 2001. On the extrapolation of results from oven heating tests for propensity to self‐heating. Combust. Flame. 124: 334‐336.
- 10 Kashim, J.B. 1999. Manufacturing of efficient kilns from locally derived refractory materials in Nigeria. Journal of Industrial Desighn &Technology1(1): 64‐70
- 11 Krause, U. & Schmidt, M. 2001. The influence of initial conditions on the propagation of smoldering fires in dust accumulation. J. Loss Prevention Process 14: 527532
- 12 Kelman, J.B. 2008. Hazard in the maritime transport of bulk materials and containerized products. IChemE. Symposium series 154 1‐15. London.
- 13 Lasek, J.A. Kopczyński, M. Janusz, M. Iluk, A. Zuwała, J. 2017. Combustion properties of torrefied biomass obtained from flue gas‐enhanced reactor. Energy 119: 362‐368.
- 14 Mannan, M.A. Aleksander, J. Ganapathy, C. Teo, D. 2006. Quality improvement of oil palm shell (OPS) as coarse aggregate in lightweight concrete. Build. Environ. 41(9): 1239‐1242.
- 15 Mannan, M.A. Ganapathy, C. 2002. Engineering properties of concrete with oil palm shell as coarse aggregate. Constr Build Mater 16(1): 29‐34.
- 16 Moghadam, R.A. Yusup, S. Lam, H.L. Al. Ahoaibi, A. Murni, M. 2013 . Hydrogen production from mixture of biomass and polyethylene waste in fluidized bed catalytic steam co‐gasification process. Chemical Engineering Transactions 35: 565‐570.
- 17 Ninduangdee, P. Kuprianon, V.I. Cha, E.F. Kaevrath R. Youngyuen, P. Atthawethworawuth, W. 2015. Thermogravimetric studies of oil palm empty fruit bunch and palm kernel shell: TG/DTG analysis and Modelling. Energy Procedia 79: 453‐458.
- 18 Olanipekun, E. Olusala, K. Ata, O. 2006. A comparative study on concrete properties using coconut shell and palm kernel shell as coarse aggregates. Build Environ. 41(3): 297‐210.
- 19 Olivier, Jos G.J. Greet, J.M. Jeroen, P.A.H.W. 2012. Trends in global CO2 emission. PBL Netherlands Environmental Assessment Agency.
- 20 Pinto, F. Andrea, R. N. Franco, C. Lopes, H. Gulyurtlu, I. Cabrita, I. 2009. Co‐gasification of coal and wastes in a pilot‐scale installation 1: Effect of catalysts in syngas treatment to achieve tar abatement. Fuel 88: 2392‐2402.
- 21 World Growth. 2011. The economic benefit of palm oil to Indonesia. A Report by World Growth. Arlington. Virginia.
- 22 Prastowo, B. 2012. Biomass resource in Indonesia: Indonesia’s solid biomass energy potential. In: GermanIndonesia Workshop on Biomass. Institute Technology Bandung. Bandung.
- 23 Rsmirez, A. Garcia‐Torrent, J. Tascon, A. 2010. Experimental determination of eslf‐heatin and self‐ignition risks associated with the dust of agricultural materials commonly stored in silos. Journal of hazardous materials 175: 920‐927.
- 24 Sturaro, A. Rella, R. Perwoli, G. Ferrara,D. Doretti, R. 2003. Chemical evidence and risks associated with soybean and rapeseed meal fermentation. Chemosphere 52(7): 1259‐1262.
- 25 UN. (2009), Recommendations on the Transport of Dangerous Goods: Manual Tests and Criteria, New York, Geneva
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16b50b0f-905c-48ce-817c-44afea5fc0d1