PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Model-predicted effect of radial flux distribution on oxygen and glucose pericellular concentration in constructs cultured in axisymmetric radial-flow packed-bed bioreactors

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Radial flow packed-bed bioreactors (rPBBs) overcome the transport limitations of static and axial-flow perfusion bioreactors and enable development of clinical-scale bioengineered tissues. We developed criteria to design rPBBs with uniform medium radial flux distribution along bioreactor length ensuring uniform construct perfusion. We report a model-based analysis of the effect of non-uniform axial distribution of medium radial flux on pericellular concentration of oxygen and glucose. Albeit pseudo-homogeneous, the model predicts how medium flux, solutes transport and cellular consumption interact and determine the pericellular oxygen and glucose concentrations in the presence of pore transport resistance to design optimal axisymmetric rPBBs and enable control of pericellular environment. Thus, oxygen and glucose supply may match cell requirements as tissue matures. Flow and solute transport in bioreactor empty spaces and construct was described with Navier-Stokes and Darcy-Brinkman equations, and with convection-diffusion and convection-diffusion-reaction equations, respectively. Solute transport in construct accounted for Michaelian cellular consumption and bulk medium-tocell surface oxygen transport resistance in terms of a transport-equivalent bed of Raschig rings. The effect of relevant dimensionless groups on pericellular and bulk solute concentrations was predicted under typical tissue engineering operation and evaluated against literature data for bone tissue engineering. Axial distribution of medium radial flux influenced the distribution of pericellular solutes concentration, more so at high cell metabolic activity. Increasing medium feed flow rates relieved non-uniform solute concentration distribution and decayed at cell surface for metabolic consumption, also starting from axially non-uniform radial flux distribution. Model predictions were obtained in runtimes compatible with on-line control strategies.
Twórcy
  • Department of Mechanical, Energy and Management Engineering, University of Calabria, Rende (CS), Italy
  • Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
  • Department of Mechanical, Energy and Management Engineering, University of Calabria, Rende (CS), Italy
  • Cellex, Rome, Italy
  • Department of Mechanical, Energy and Management Engineering, University of Calabria, Rende (CS), Italy
  • Ghent University, IbiTech Institute Biomedical Technology, Gent, Belgium
  • Ghent University, IbiTech Institute Biomedical Technology, Gent, Belgium
  • Department of Mechanical, Energy and Management Engineering, University of Calabria, Rende (CS), Italy
Bibliografia
  • [1] Moysidou C-M, Barberio C, Owens RM. Advances in Engineering Human Tissue Models. Front Bioeng Biotechnol 2021;8.
  • [2] Muschler GF, Nakamoto C, Griffith LG. Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg Am 2004;86:1541-58. https://doi.org/10.2106/00004623-200407000-00029.
  • [3] Rotem A, Toner M, Bhatia S, Foy BD, Tompkins RG, Yarmush ML. Oxygen is a factor determining in vitro tissue assembly: Effects on attachment and spreading of hepatocytes. Biotechnol Bioeng 1994;43:654-60. https://doi.org/10.1002/bit.260430715.
  • [4] Catapano G. Mass transfer limitations to the performance of membrane bioartificial liver support devices. Int J Artif Organs 1996;19:18-35.
  • [5] Allen JW, Khetani SR, Bhatia SN. In vitro zonation and toxicity in a hepatocyte bioreactor. Toxicol Sci 2005;84:110-9. https://doi.org/10.1093/toxsci/kfi052.
  • [6] Malda J, Klein TJ, Upton Z. The roles of hypoxia in the in vitro engineering of tissues. Tissue Eng 2007;13:2153-62. https://doi.org/10.1089/ten.2006.0417.
  • [7] Griffith CK, George SC. The effect of hypoxia on in vitro prevascularization of a thick soft tissue. Tissue Eng Part A 2009;15:2423-34. https://doi.org/10.1089/ten.tea.2008.0267.
  • [8] Volkmer E, Drosse I, Otto S, Stangelmayer A, Stengele M, Kallukalam BC, et al. Hypoxia in static and dynamic 3D culture systems for tissue engineering of bone. Tissue Eng Part A 2008;14:1331-40. https://doi.org/10.1089/ten.tea.2007.0231.
  • [9] Gaspar DA, Gomide V, Monteiro FJ. The role of perfusion bioreactors in bone tissue engineering. Biomatter 2012;2:167-75. https://doi.org/10.4161/biom.22170.
  • [10] Sikavitsas VI, Bancroft GN, Mikos AG. Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor. J Biomed Mater Res 2002;62:136-48. https://doi.org/10.1002/jbm.10150.
  • [11] Bancroft GN, Sikavitsas VI, Mikos AG. Design of a flow perfusion bioreactor system for bone tissue-engineering applications. Tissue Eng 2003;9:549-54. https://doi.org/10.1089/107632703322066723.
  • [12] Kim SS, Sundback CA, Kaihara S, Benvenuto MS, Kim BS, Mooney DJ, et al. Dynamic seeding and in vitro culture of hepatocytes in a flow perfusion system. Tissue Eng 2000;6:39-44. https://doi.org/10.1089/107632700320874.
  • [13] Warnock J, Bratch K, Al-Rubeai M. Packed Bed Bioreactors 2006:87-113. https://doi.org/10.1007/1-4020-3741-4_4.
  • [14] Fröhlich M, Grayson WL, Marolt D, Gimble JM, Kregar-Velikonja N, Vunjak-Novakovic G. Bone grafts engineered from human adipose-derived stem cells in perfusion bioreactor culture. Tissue Eng Part A 2010;16:179-89. https://doi.org/10.1089/ten.TEA.2009.0164.
  • [15] Pörtner R, Nagel-Heyer S, Goepfert C, Adamietz P, Meenen NM. Bioreactor design for tissue engineering. J Biosci Bioeng 2005;100:235-45. https://doi.org/10.1263/jbb.100.235.
  • [16] Martin I, Smith T, Wendt D. Bioreactor-based roadmap for the translation of tissue engineering strategies into clinical products. Trends Biotechnol 2009;27:495-502. https://doi.org/10.1016/j.tibtech.2009.06.002.
  • [17] Tandon N, Marolt D, Cimetta E, Vunjak-Novakovic G. Bioreactor engineering of stem cell environments. Biotechnol Adv 2013;31:1020-31. https://doi.org/10.1016/j.biotechadv.2013.03.007.
  • [18] Burova I, Wall I, Shipley RJ. Mathematical and computational models for bone tissue engineering in bioreactor systems. J Tissue Eng 2019;10: 2041731419827922. Doi: 10.1177/2041731419827922.
  • [19] Piret JM, Devens DA, Cooney CL. Nutrient and metabolite gradients in mammalian cell hollow fiber bioreactors. Can J Chem Eng 1991;69:421-8. https://doi.org/10.1002/cjce.5450690204.
  • [20] Fassnacht D, Pörtner R. Experimental and theoretical considerations on oxygen supply for animal cell growth in fixed-bed reactors. J Biotechnol 1999;72:169-84. https://doi.org/10.1016/s0168-1656(99)00129-7.
  • [21] Singh H, Ang ES, Lim TT, Hutmacher DW. Flow modeling in a novel non-perfusion conical bioreactor. Biotechnol Bioeng 2007;97:1291-9. https://doi.org/10.1002/bit.21327.
  • [22] McCoy RJ, O’Brien FJ. Visualizing feasible operating ranges within tissue engineering systems using a “windows of operation” approach: a perfusion-scaffold bioreactor case study. Biotechnol Bioeng 2012;109:3161-71. https://doi.org/10.1002/bit.24566.
  • [23] Kurosawa H, Märkl H, Niebuhr-Redder C, Matsumura M. Dialysis bioreactor with radial-flow fixed bed for animal cell culture. J Ferment Bioeng 1991;72:41-5. https://doi.org/10.1016/0922-338X(91)90144-6.
  • [24] Kawada M, Nagamori S, Aizaki H, Fukaya K, Niiya M, Matsuura T, et al. Massive culture of human liver cancer cells in a newly developed radial flow bioreactor system: ultrafine structure of functionally enhanced hepatocarcinoma cell lines. In Vitro Cell Dev Biol Anim 1998;34:109-15. https://doi.org/10.1007/s11626-998-0092-z.
  • [25] Morsiani E, Brogli M, Galavotti D, Bellini T, Ricci D, Pazzi P, et al. Long-term expression of highly differentiated functions by isolated porcine hepatocytes perfused in a radial-flow bioreactor. Artif Organs 2001;25:740-8. https://doi.org/10.1046/j.1525-1594.2001.06669.x.
  • [26] Hongo T, Kajikawa M, Ishida S, Ozawa S, Ohno Y, Sawada J-I, et al. Three-dimensional high-density culture of HepG2 cells in a 5-ml radial-flow bioreactor for construction of artificial liver. J Biosci Bioeng 2005;99:237-44. https://doi.org/10.1263/jbb.99.237.
  • [27] Saito M, Matsuura T, Masaki T, Maehashi H, Shimizu K, Hataba Y, et al. Reconstruction of liver organoid using a bioreactor. World J Gastroenterol 2006; 12:1881-8. https://doi.org/10.3748/wjg.v12.i12.1881.
  • [28] Miskon A, Sasaki N, Yamaoka T, Uyama H, Kodama M. Radial Flow Type Bioreactor for Bioartificial Liver Assist System Using PTFE Non-Woven Fabric Coated with Poly-amino Acid Urethane Copolymer. Macromol Symp 2007; 249-250:151-8. https://doi.org/10.1002/masy.200750325.
  • [29] Ishii Y, Saito R, Marushima H, Ito R, Sakamoto T, Yanaga K. Hepatic reconstruction from fetal porcine liver cells using a radial flow bioreactor. World J Gastroenterol 2008;14:2740-7. https://doi.org/10.3748/wjg.14.2740.
  • [30] Marín-Hernández A, López-Ramírez SY, Del Mazo-Monsalvo I, Gallardo-Pérez JC, Rodríguez-Enríquez S, Moreno-Sánchez R, et al. Modeling cancer glycolysis under hypoglycemia, and the role played by the differential expression of glycolytic isoforms. FEBS J 2014;281:3325-45. https://doi.org/10.1111/febs.12864.
  • [31] Aoki T, Murakami M, Yasuda D, Koizumi T, Jin Z, Fujimori A, et al. Development of a New Bioartificial Liver Support System Using a Radial-flow Bioreactor. Showa Univ J Med Sci 2015;27:155-65. https://doi.org/10.15369/sujms.27.155.
  • [32] Xie Y, Hardouin P, Zhu Z, Tang T, Dai K, Lu J. Three-dimensional flow perfusion culture system for stem cell proliferation inside the critical-size beta-tricalcium phosphate scaffold. Tissue Eng 2006;12:3535-43. https://doi.org/10.1089/ten.2006.12.3535.
  • [33] Olivier V, Hivart P, Descamps M, Hardouin P. In vitro culture of large bone substitutes in a new bioreactor: importance of the flow direction. Biomed Mater 2007;2:174-80. https://doi.org/10.1088/1748-6041/2/3/002.
  • [34] Arano T, Sato T, Matsuzaka K, Ikada Y, Yoshinari M. Osteoblastic cell proliferation with uniform distribution in a large scaffold using radial-flow bioreactor. Tissue Eng Part C Methods 2010;16:1387-98. https://doi.org/10.1089/ten.TEC.2009.0377.
  • [35] Guarino V, Urciuolo F, Alvarez-Perez MA, Mele B, Netti PA, Ambrosio L. Osteogenic differentiation and mineralization in fibre-reinforced tubular scaffolds: theoretical study and experimental evidences. J R Soc Interface 2012;9:2201-12. https://doi.org/10.1098/rsif.2011.0913.
  • [36] Katayama A, Arano T, Sato T, Ikada Y, Yoshinari M. Radial-flow bioreactor enables uniform proliferation of human mesenchymal stem cells throughout a three-dimensional scaffold. Tissue Eng Part C Methods 2013;19:109-16. https://doi.org/10.1089/ten.TEC.2011.0722.
  • [37] Kanda Y, Nishimura I, Sato T, Katayama A, Arano T, Ikada Y, et al. Dynamic cultivation with radial flow bioreactor enhances proliferation or differentiation of rat bone marrow cells by fibroblast growth factor or osteogenic differentiation factor. Regenerative Therapy 2016;5:17-24. https://doi.org/10.1016/j.reth.2016.06.001.
  • [38] Suzuki K, Fukasawa J, Miura M, Lim PN, Honda M, Matsuura T, et al. Influence of Culture Period on Osteoblast Differentiation of Tissue-Engineered Bone Constructed by Apatite-Fiber Scaffolds Using Radial-Flow Bioreactor. Int J Mol Sci 2021;22:13080. https://doi.org/10.3390/ijms222313080.
  • [39] Suzuki K, Honda M, Matsuura T, Aizawa M. Living reactions of tissue-engineered bone derived from apatite-fiber scaffold in rat subcutaneous tissues. J Ceram Soc Jpn 2022;130:65-73. https://doi.org/10.2109/jcersj2.21108.
  • [40] Ramírez-Fernández O, Zúñiga-Aguilar E, Gómez-Quiroz LE, Gutiérrez-Ruiz MC, Godínez R, Ramírez-Fernández O, et al. Organic-Polymeric Radial Flow Biorreactor for Liver Models. Revista Mexicana de Ingeniería Biomédica 2016;37:165-79. https://doi.org/10.17488/rmib.37.3.1.
  • [41] Kino-Oka M, Taya M. Design and Operation of a Radial Flow Bioreactor for Reconstruction of Cultured Tissues. In: Chaudhuri J, Al-Rubeai M, editors. Bioreactors for Tissue Engineering: Principles, Design and Operation, Dordrecht: Springer Netherlands; 2005, p. 115-33. Doi: 10.1007/1-4020-3741-4_5.
  • [42] Donato D, Napoli IED, Catapano G. Model-Based Optimization of Scaffold Geometry and Operating Conditions of Radial Flow Packed-Bed Bioreactors for Therapeutic Applications. Processes 2014;2:34-57. https://doi.org/10.3390/pr2010034.
  • [43] Papantoniou I, Guyot Y, Sonnaert M, Kerckhofs G, Luyten FP, Geris L, et al. Spatial optimization in perfusion bioreactors improves bone tissue-engineered construct quality attributes. Biotechnol Bioeng 2014;111:2560-70. https://doi.org/10.1002/bit.25303.
  • [44] Zhao F, Grayson WL, Ma T, Irsigler A. Perfusion affects the tissue developmental patterns of human mesenchymal stem cells in 3D scaffolds. J Cell Physiol 2009; 219:421-9. https://doi.org/10.1002/jcp.21688.
  • [45] Porter B, Zauel R, Stockman H, Guldberg R, Fyhrie D. 3-D computational modeling of media flow through scaffolds in a perfusion bioreactor. J Biomech 2005;38: 543-9. https://doi.org/10.1016/j.jbiomech.2004.04.011.
  • [46] Cioffi M, Boschetti F, Raimondi MT, Dubini G. Modeling evaluation of the fluid-dynamic microenvironment in tissue-engineered constructs: a micro-CT based model. Biotechnol Bioeng 2006;93:500-10. https://doi.org/10.1002/bit.20740.
  • [47] Maes F, Claessens T, Moesen M, Van Oosterwyck H, Van Ransbeeck P, Verdonck P. Computational models for wall shear stress estimation in scaffolds: A comparative study of two complete geometries. J Biomech 2012;45:1586-92. https://doi.org/10.1016/j.jbiomech.2012.04.015.
  • [48] Guyot Y, Papantoniou I, Luyten FP, Geris L. Coupling curvature-dependent and shear stress-stimulated neotissue growth in dynamic bioreactor cultures: a 3D computational model of a complete scaffold. Biomech Model Mechanobiol 2016; 15:169-80. https://doi.org/10.1007/s10237-015-0753-2.
  • [49] Tharakan JP, Chau PC. Modeling and analysis of radial flow mammalian cell culture. Biotechnol Bioeng 1987;29:657-71. https://doi.org/10.1002/bit.260290602.
  • [50] Cima LG, Blanch HW, Wilke CR. A theoretical and experimental evaluation of a novel radial-flow hollow fiber reactor for mammalian cell culture. Bioprocess Eng 1990;5:19-30. https://doi.org/10.1007/BF00369643.
  • [51] Donato D, Falvo D’Urso Labate G, Debbaut C, Segers P, Catapano G. Optimization of construct perfusion in radial-flow packed-bed bioreactors for tissue engineerin with a 2D stationary fluid dynamic model. Biochem Eng J 2016:109. https://doi.org/10.1016/j.bej.2016.01.019.
  • [52] Fragomeni G, Iannelli R, Falvo D’Urso Labate G, Schwentenwein M, Catapano G. Validation of a novel 3D flow model for the optimization of construct perfusion in radial-flow packed-bed bioreactors (rPBBs) for long-bone tissue engineering. N Biotechnol 2019;52:110-20. https://doi.org/10.1016/j.nbt.2019.06.001.
  • [53] Nuschke A, Rodrigues M, Wells AW, Sylakowski K, Wells A. Mesenchymal stem cells/multipotent stromal cells (MSCs) are glycolytic and thus glucose is a limiting factor of in vitro models of MSC starvation. Stem Cell Res Ther 2016;7:179. https://doi.org/10.1186/s13287-016-0436-7.
  • [54] Chang H-C, Saucier M, Calo JM. Design criterion for radial flow fixed-bed reactors. AIChE J 1983;29:1039-41. https://doi.org/10.1002/aic.690290624.
  • [55] Bird RB, Stewart WE, Lightfoot EN. Transport Phenomena. Revised edizione. New York: John Wiley & Sons Inc; 2007.
  • [56] Brinkman HC. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl Sci Res 1949;1:27. https://doi.org/10.1007/BF02120313.
  • [57] Dwivedi PN, Upadhyay SN. Particle-Fluid Mass Transfer in Fixed and Fluidized Beds. Ind Eng Chem Proc Des Dev 1977;16:157-65. https://doi.org/10.1021/i260062a001.
  • [58] Majhy B, Priyadarshinia P, Sen AK. Effect of surface energy and roughness on cell adhesion and growth - facile surface modification for enhanced cell culture. RSC Adv 2021;11:15467. https://doi.org/10.1039/d1ra02402g.
  • [59] Bao M, Xie J, Katoele N, Hu X, Wang B, Piruska A, et al. Cellular volume and matrix stiffness direct stem cell behavior in a 3D Microniche. ACS Appl Mater Interfaces 2019;11:1754-9. https://doi.org/10.1021/acsami.8b19396.
  • [60] Fogler HS. Elements of Chemical Reaction Engineering. 5th edition. Boston: Pearson; 2016.
  • [61] Loiacono LA, Shapiro DS. Detection of hypoxia at the cellular level. Crit Care Clin 2010;26:409-21, table of contents. Doi: 10.1016/j.ccc.2009.12.001.
  • [62] Dias MR, Fernandes PR, Guedes JM, Hollister SJ. Permeability analysis of scaffolds for bone tissue engineering. J Biomech 2012;45:938-44. https://doi.org/10.1016/j.jbiomech.2012.01.019.
  • [63] Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005;26:5474-91. https://doi.org/10.1016/j.biomaterials.2005.02.002.
  • [64] Van Cleynenbreugel T, Schrooten J, Van Oosterwyck H, Vander SJ. Micro-CT-based screening of biomechanical and structural properties of bone tissue engineering scaffolds. Med Biol Eng Comput 2006;44:517-25. https://doi.org/10.1007/s11517-006-0071-z.
  • [65] Ochoa I, Sanz-Herrera JA, García-Aznar JM, Doblaré M, Yunos DM, Boccaccini AR. Permeability evaluation of 45S5 Bioglass-based scaffolds for bone tissue engineering. J Biomech 2009;42:257-60. https://doi.org/10.1016/j.jbiomech.2008.10.030.
  • [66] Jeong CG, Zhang H, Hollister SJ. Three-dimensional poly(1,8-octanediol-cocitrate) scaffold pore shape and permeability effects on sub-cutaneous in vivo chondrogenesis using primary chondrocytes. Acta Biomater 2011;7:505-14. https://doi.org/10.1016/j.actbio.2010.08.027.
  • [67] Mitsak AG, Kemppainen JM, Harris MT, Hollister SJ. Effect of polycaprolactone scaffold permeability on bone regeneration in vivo. Tissue Eng Part A 2011;17: 1831-9. https://doi.org/10.1089/ten.TEA.2010.0560.
  • [68] Gardel LS, Correia-Gomes C, Serra LA, Gomes ME, Reis RL. A novel bidirectional continuous perfusion bioreactor for the culture of large-sized bone tissue-engineered constructs. J Biomed Mater Res B Appl Biomater 2013;101:1377-86. https://doi.org/10.1002/jbm.b.32955.
  • [69] Lee K-W, Wang S, Lu L, Jabbari E, Currier BL, Yaszemski MJ. Fabrication and characterization of poly(propylene fumarate) scaffolds with controlled pore structures using 3-dimensional printing and injection molding. Tissue Eng 2006;12: 2801-11. https://doi.org/10.1089/ten.2006.12.2801.
  • [70] Lira-Parada PA, Pettersen E, Biegler LT, Bar N. Implications of dimensional analysis in bioreactor models: Parameter estimation and identifiability. Chem Eng J 2021; 417:129220. https://doi.org/10.1016/j.cej.2021.129220.
  • [71] Lavrentieva A, Majore I, Kasper C, Hass R. Effects of hypoxic culture conditions on umbilical cord-derived human mesenchymal stem cells. Cell Commun Signal 2010; 8:18. https://doi.org/10.1186/1478-811X-8-18.
  • [72] Moya A, Paquet J, Deschepper M, Larochette N, Oudina K, Denoeud C, et al. Human mesenchymal stem cell failure to adapt to glucose shortage and rapidly use intracellular energy reserves through glycolysis explains poor cell survival after implantation. Stem Cells 2018;36(3):363-76. https://doi.org/10.1002/stem.2763.
  • [73] Zhong Y, Motavalli M, Wang K-C, Caplan AI, Welter JF, Baskaran H. Dynamics of Intrinsic Glucose Uptake Kinetics in Human Mesenchymal Stem Cells during Chondrogenesis. Ann Biomed Eng 2018;46:1896. https://doi.org/10.1007/s10439-018-2067-x.
  • [74] Zhao F, Ma T. Perfusion bioreactor system for human mesenchymal stem cell tissue engineering: dynamic cell seeding and construct development. Biotechnol Bioeng 2005;91:482-93. https://doi.org/10.1002/bit.20532.
  • [75] Komarova SV, Ataullakhanov FI, Globus RK. Bioenergetics and mitochondrial transmembrane potential during differentiation of cultured osteoblasts. Am J Physiol Cell Physiol 2000;279:C1220-9. https://doi.org/10.1152/ajpcell.2000.279.4.C1220.
  • [76] Mohebbi-Kalhori D, Behzadmehr A, Doillon C, Hadjizadeh A. Computational modeling of adherent cell growth in a hollow-fiber membrane bioreactor for large-scale 3-D bone tissue engineering. J Artif Organs 2012;15(3):250-65. https://doi.org/10.1007/s10047-012-0649-1. PMID: 22610313.
  • [77] Kareeri AA, Zughbi HD, Al-Ali HH. Simulation of Flow Distribution in Radial Flow Reactors. Ind Eng Chem Res 2006;45:2862-74. https://doi.org/10.1021/ie050027x.
  • [78] Geankoplis CJ. Transport Processes and Unit Operations. Subsequent edition. Engelwood Cliffs, N.J: Pearson College Div; 1993.
  • [79] Perry RH, Green DW, editors. Perry’s Chemical Engineer’s Handbook. 8th edition. New York: McGraw-Hill Professional Pub; 2007.
  • [80] Shao W. The effect of radial convection on cell proliferation Iin bone tissue engineering 2009.
  • [81] Liu M, Liu N, Zang R, Li Y, Yang S-T. Engineering stem cell niches in bioreactors. World J Stem Cells 2013;5:124-35. https://doi.org/10.4252/wjsc.v5.i4.124.
  • [82] Munson BR, Young DF, Okiishi TH, Huebsch WW, Rothmayer AP. Fundamentals of fluid mechanics. 7th Ed. Hoboken NJ: Wiley & Sons Inc; 2013.
  • [83] Idelchik IE. Handbook of Hydraulic Resistance. Washington, DC: NTIS; 1960.
  • [84] Lubiniecki AS. Large-scale mammalian cell culture technology, Vol. 10. Marcel Dekker Inc.; 1990.
  • [85] Burova I, Peticone C, De Silva Thompson D, Knowles JC, Wall I, Shipley RJ. A parameterised mathematical model to elucidate osteoblast cell growth in a phosphate-glass microcarrier culture. J Tissue Eng 2019; 5:10: 2041731419830264. doi: 10.1177/2041731419830264.
  • [86] Zeng Z, Jing D, Zhang Z, Duan Y, Xue F. Cyclic mechanical stretch promotes energy metabolism in osteoblast-like cells through an mTOR signaling-associated mechanism. Int J Molecular Med 2015;36:947-56.
  • [87] Eghbali H, Nava MM, Leonardi G, Mohebbi-Kalhori D, Sebastiano R, Samimi A, et al. An Experimental-Numerical Investigation on the Effects of Macroporous Scaffold Geometry on Cell Culture Parameters. Int J Artif Organs 2017;40:185-95. https://doi.org/10.5301/ijao.5000554.
  • [88] Melchels FPW, Tonnarelli B, Olivares AL, Martin I, Lacroix D, Feijen J, et al. The influence of the scaffold design on the distribution of adhering cells after perfusion cell seeding. Biomaterials 2011;32:2878-84. https://doi.org/10.1016/j.biomaterials.2011.01.023.
  • [89] Bancroft GN, Sikavitsas VI, van den Dolder J, Sheffield TL, Ambrose CG, Jansen JA, et al. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc Natl Acad Sci USA 2002;99:12600-5. https://doi.org/10.1073/pnas.202296599.
  • [90] Noble PC, Alexander JW, Lindahl LJ, Yew DT, Granberry WM, Tullos HS. The anatomic basis of femoral component design. Clin Orthop Relat Res 1988:148-65.
  • [91] Park J, Li Y, Berthiaume F, Toner M, Yarmush ML, Tilles AW. Radial flow hepatocyte bioreactor using stacked microfabricated grooved substrates. Biotechnol Bioeng 2008;99:455-67. https://doi.org/10.1002/bit.21572.
  • [92] Grimm MJ, Williams JL. Measurements of permeability in human calcaneal trabecular bone. J Biomech 1997;30:743-5. https://doi.org/10.1016/s0021-9290(97)00016-x.
  • [93] Martin RB. Porosity and specific surface of bone. Crit Rev Biomed Eng 1984;10: 179-222.
  • [94] Han P, Bartels DM. Temperature Dependence of Oxygen Diffusion in H2O and D2O. J Phys Chem 1996;100:5597-602. https://doi.org/10.1021/jp952903y.
  • [95] Bashkatov AN, Genina EA, Sinichkin YP, Kochubey VI, Lakodina NA, Tuchin VV. Glucose and mannitol diffusion in human dura mater. Biophys J 2003 Nov;85(5): 3310-8. https://doi.org/10.1016/S0006-3495(03)74750-X.
  • [96] Li S, De Wijn JR, Li J, Layrolle P, De Groot K. Macroporous biphasic calcium phosphate scaffold with high permeability/porosity ratio. Tissue Eng 2003;9: 535-48. https://doi.org/10.1089/107632703322066714.
  • [97] Stockwell RA. The interrelationship of cell density and cartilage thickness in mammalian articular cartilage. J Anat 1971;109:411-21.
  • [98] Sullivan JP, Gordon JE, Bou-Akl T, Matthew HWT, Palmer AF. Enhanced oxygen delivery to primary hepatocytes within a hollow fiber bioreactor facilitated via hemoglobin-based oxygen carriers. Artif Cells Blood Substit Immobil Biotechnol 2007;35:585-606. https://doi.org/10.1080/10731190701586269.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16b4f740-9936-4eaa-a147-c891ab4e8a11
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.