PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical study of car radiator using dimple roughness and nanofluid

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermal augmentation in flat tube of car radiator using different nanofluids has been performed more often, but use of artificial roughness has been seldom done. Artificial roughness in the form of dimple is used in the present research work. Present study shows the impact of dimple shaped roughness and nanofluid (Al2O3/pure water) on the performance of car radiator. The pitch of dimples is kept at 15 mm (constant) for all the studies performed. The Reynolds number of the flow is selected in the turbulent regime ranging from 9350 to 23 000 and the concentration of the nanofluid is taken in the range of 0.1–1%. It has been found that the heat transfer rate has improved significantly in dimpled radiator tube on the expense of pumping power. Furthermore, the heat transfer rate also increases with increase in nanoparticle concentration from 0.1% to 1.0%. The highest heat transfer enhancement of 79% is observed at Reynolds number 9350, while least enhancement of 18% is observed for Reynolds number of 23 000.
Rocznik
Strony
125--140
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
  • Uttarakhand Technical University, Faculty of Technology, Chakrata Road, Dehradun-248007, Uttarakhand, India
  • Uttarakhand Technical University, Faculty of Technology, Chakrata Road, Dehradun-248007, Uttarakhand, India
  • K.R. Mangalam University, Mechanical Engineering Department, Sohna Road, Gurgram-122103, Haryana, India
  • MIET, Mechanical Engineering Department, Meerut-250005, Uttar Pradesh, India
Bibliografia
  • [1] Goudarzi K., Jamali H.: Heat transfer enhancement of Al2O3-EG nanofluid in a car radiator with wire coil inserts. Appl. Therm. Eng. 118(2017), 510–517.
  • [2] Arora N., Gupta M.: An updated review on application of nanofluids in flat tubes radiators for improving cooling performance. Renew. Sust. Energ. Rev. 134(2020),110242.
  • [3] Naddaf A., Heris S.Z., Pouladi B.: An experimental study on heat transfer performance and pressure drop of nanofluids using graphene and multi-walled carbon nanotubes based on diesel oil. Powder Technol. 352(2019), 369–380.
  • [4] Pak B.C., Cho Y.I.: Hydrodynamic and heat transfer study of dispersed fluid with sub-micron metallic oxide particles. Exp. Heat Transfer 11(1998), 151–170.
  • [5] Choi S.U., Eastman J.A.: Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab., 1995.
  • [6] Ahmed S.A., Ozkaymak M., Sözen A., Menlik T., Fahed A.: Improving car radiator performance by using TiO2–water nanofluid. Eng. Sci. Technol. Int. J. 21(2018),996–1005.
  • [7] Naraki M., Peyghambarzadeh S.M., Hashemabadi S.H., Vermahmoudi Y.: Parametric study of overall heat transfer coefficient of CuO/water nanofluids in a car radiator. Int. J. Therm. Sci. 66(2013), 82–90.
  • [8] Heris S.Z, Shokrgozar M., Poorpharhang S., Shanbedi M., Noie S.H.: Experimental study of heat transfer of a car radiator with CuO/ethylene glycol–water as a coolant. J. Disp. Sci. Technol. 35(2014), 5, 677–684.
  • [9] Maghrabie H.M., Mousa H.M.: Thermal performance intensification of car radiator using SiO2/water and ZnO/water nanofluids. ASME J. Thermal Sci. Eng. Appl.14(2022), 3, 034501.
  • [10] Bhogare R.A., Kothawale B.S.: Performance investigation of automobile radiator operated with Al2O3 based nanofluid. IOSR J. Mech. Civil Eng. 11(2014), 3, 23–30.
  • [11] Nambeesan K.P., Parthiban R., Kumar K.R., Athul U.R., Vivek M., Thirumalini S.: Experimental study of heat transfer enhancement in automobile radiator using Al2O3/water-ethylene glycol nanofluid coolants. Int. J. Auto. Mech. Eng. 12(2015), 2857–2865.
  • [12] Kumar N., Singh P., Redhewal A.K., Bhandari P.: A review on nanofluids applications for heat transfer in micro-channels. Procedia Eng. 127(2015), 1197–1202.
  • [13] Dhale L.P., Wadhave P.B., Kanade D.V., Sable Y.S.: Effect of nanofluid on cooling system of engine. Int. J. Eng. Appl. Sci. 2(2015), 2, 257815.
  • [14] Senthilraja S., Vijayakumar K.C., Gangadevi R.: Experimental investigation of heat transfer performance of different nanofluids using automobile radiator. In: Applied Mechanics and Materials. Vol. 787, 212–216. Trans Tech Publications 2015.
  • [15] Chougule S.S., Nirgude V.V., Gharge P.D., Mayank M., Sahu S.K.: Heat transfer enhancements of low volume concentration CNT/water nanofluid and wire coil inserts in a circular tube. Energy Proced. 90(2016), 552–558.
  • [16] Singh B.P., Bisht V.S., Bhandari P., Rawat K.: Thermo-fluidic modelling of a heat exchanger tube with conical shaped insert having protrusion and dimple roughness. Aptisi Trans. Technopreneurship (ATT) 3(2021), 2, 13–29.
  • [17] Singh B.P., Bisht V.S., Bhandari P.: Numerical study of heat exchanger having protrusion and dimple roughened conical ring inserts. In: Advances in Fluid and Thermal Engineering (B.S. Sikarwar, B. Sundén, Q. Wang, Eds.), Lecture Notes in Mechanical Engineering, 2021, 151–161.
  • [18] Kore S.S., Yadav R.J., Sane N.K.: Investigation of effect of dimple depth on heat transfer and fluid flow within rectangular channel. Procedia Eng. 127(2015), 1110–1117.
  • [19] Katkhaw N., Vorayas N., Kiatsiriroat T., Nuntaphan A.: Heat transfer behaviour of flat plate having spherical dimpled surfaces, Case Stud. Therm. Eng. 8(2016), 370–377.
  • [20] Kumar K., Kumar S., Gupta M., Garg H.C.: Tribological behaviour of WC-10Co4Cr coated slurry pipe materials. Ind. Lubr. Tribol. 70(2018), 9, 1721–1728.
  • [21] Kumar K., Kumar S., Tripathi C.B., Sharma H., Prasad S.B.: Parametric optimization of slurry erosion behaviour of brass. Mater. Today-Proc. 26(2020), 2, 1604–1609.
  • [22] Kharkwal H., Singh S.: Effect of serrated circular rings on heat transfer augmentation of circular tube heat exchanger. Arch. Thermodyn. 43(2022), 2, 129–155.
  • [23] Konchada P.K., Sukhvinder B., Relangi S., Chekuri R.: Neuro-genetic optimization of ribbed heat exchanger using entropy augmentation generation number. Arch. Thermodyn. 41(2020), 2, 169–184.
  • [24] Datta A., Halder P.: Thermal efficiency and hydraulic performance evaluation on Ag–Al2O3 and SiC–Al2O3 hybrid nanofluid for circular jet impingement. Arch. Thermodyn. 42(2021), 1, 163–182.
  • [25] Saeed F.R., Al-Dulaimi M.A.: Numerical investigation for convective heat transfer of nanofluid laminar flow inside a circular pipe by applying various models. Arch.Thermodyn. 42(2021), 1, 71–95.
  • [26] Abdolhossein Zadeh A., Nakhjavani S.: Thermal analysis of a gravity-assisted heat pipe working with zirconia-acetone nanofluids: An experimental assessment. Arch.Thermodyn. 41(2020), 2, 65–83.
  • [27] Pak B.C., Cho Y.I.: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. Int. J. 11(1998), 2, 151–170.
  • [28] Xuan Y., Roetzel, W.: Conceptions for heat transfer correlation of nanofluids. Int. J. Heat Mass Transf. 43(2000), 19, 3701–3707.
  • [29] Hamilton R.L., Crosser O.K.: Thermal conductivity of heterogeneous two-component systems. Ind. Eng. Chem. Fund. 1(1962), 3, 187–191.
  • [30] Masoumi N., Sohrabi N., Behzadmehr A.: A new model for calculating the effective viscosity of nanofluids. J. Phys. D Appl. Phys. 42(2009), 5, 055501.
  • [31] ANSYS Fluent Theory Guide 2009, http://ansys.com/Products/Simulation+Technlogy/Fluid+Dynamics (accessed 11 Jan. 2022).
  • [32] Bhandari P., Prajapati Y.K.: Fluid flow and heat transfer behaviour in distinct array of stepped micro pin fin heat sink. J. Enhanced Heat Transf., 28(2021), 4, 31–61.
  • [33] Bhandari P., Prajapati Y.K., Uniyal A.: Influence of three dimensionality effects on thermal hydraulic performance for stepped micro pin fin heat sink. Meccanica (2022).
  • [34] Zainith P., Mishra N.K.: A comparative study on thermal-hydraulic performance of different non-Newtonian nanofluids through an elliptical annulus. J. Therm. Sci. Eng. Appl. 13(2021), 051027-1-10.
  • [35] Zainith P., Mishra N.K.: Experimental and numerical investigations on exergy and second law efficiency of shell and helical coil heat exchanger using carboxymethyl cellulose based non-Newtonian nanofluids. Int. J. Thermophys. 43(2022), 3, 1–29.
  • [36] Delavari V., Hashemabadi, S.H.: CFD simulation of heat transfer enhancement of Al2O3/water and Al2O3/ethylene glycol nanofluids in a car radiator. Appl. Therm.Eng. 73(2014), 378–388.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16b4acd9-5d6e-4c63-a817-cf73e286a4f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.