PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Direct proofs of intrinsic properties of prox-regular sets in Hilbert spaces

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We provide new proofs of two intrinsic properties of prox-regular sets in Hilbert spaces.
Wydawca
Rocznik
Strony
143--149
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
  • Faculty of Mathematics and Informatics, Sofia University, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria
  • Faculty of Mathematics and Informatics, Sofia University, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria
Bibliografia
  • [1] S. Adly, F. Nacry and L. Thibault, Preservation of prox-regularity of sets with applications to constrained optimization, SIAM J. Optim. 26 (2016), no. 1, 448-473.
  • [2] S. Adly, F. Nacry and L. Thibault, Prox-regularity approach to generalized equations and image projection, ESAIM Control Optim. Calc. Var. 24 (2018), no. 2, 677-708.
  • [3] S. Adly, F. Nacry and L. Thibault, Prox-regular sets and Legendre-Fenchel transform related to separation properties, Optimization 71 (2022), no. 7, 2097-2129.
  • [4] M. V. Balashov and G. E. Ivanov, Weakly convex and proximally smooth sets in Banach spaces, Izv. Ross. Akad. Nauk Ser. Mat. 73 (2009), no. 3, 23-66; translation in Izv. Math. 73 (2009), no. 3, 455-499.
  • [5] F. Bernard and L. Thibault, Prox-regularity of functions and sets in Banach spaces, Set-Valued Anal. 12 (2004), no. 1-2, 25-47.
  • [6] F. Bernard, L. Thibault and N. Zlateva, Characterizations of prox-regular sets in uniformly convex Banach spaces, J. Convex Anal. 13 (2006), no. 3-4, 525-559.
  • [7] F. Bernard, L. Thibault and N. Zlateva, Prox-regular sets and epigraphs in uniformly convex Banach spaces: Various regularities and other properties, Trans. Amer. Math. Soc. 363 (2011), no. 4, 2211-2247.
  • [8] F. H. Clarke, R. J. Stern and P. R. Wolenski, Proximal smoothness and the lower-C2 property, J. Convex Anal. 2 (1995), no. 1-2, 117-144.
  • [9] G. Colombo and L. Thibault, Prox-regular sets and applications, in: Handbook of Nonconvex Analysis and Applications, International Press, Somerville (2010), 99-182.
  • [10] H. Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418-491.
  • [11] G. E. Ivanov, Weak convexity in the sense of Vial and Efimov-Stechkin (in Russian), Izv. Ross. Akad. Nauk Ser. Mat. 69 (2005), no. 6, 35-60; translation in Izv. Math. 69 (2005), 1113-1135.
  • [12] F. Nacry and L. Thibault, Regularization of sweeping process: Old and new, Pure Appl. Funct. Anal. 4 (2019), no. 1, 59-117.
  • [13] R. A. Poliquin and R. T. Rockafellar, Prox-regular functions in variational analysis, Trans. Amer. Math. Soc. 348 (1996), no. 5, 1805-1838.
  • [14] R. A. Poliquin, R. T. Rockafellar and L. Thibault, Local differentiability of distance functions, Trans. Amer. Math. Soc. 352 (2000), no. 11, 5231-5249.
  • [15] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Grundlehren Math. Wiss. 317, Springer, Berlin, 1998.
  • [16] L. Thibault, Unilateral Variational Analysis in Banach Spaces. Part I: General Theory. Part II: Special Classes of Functions and Sets, to appear.
  • [17] J.-P. Vial, Strong and weak convexity of sets and functions, Math. Oper. Res. 8 (1983), no. 2, 231-259.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16b3d280-7107-4e08-b258-dc7e8d7b175f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.