PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improved Accuracy of Damage Index Evaluation in Concrete Structures by Simultaneous Hardware Triggering

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Non-invasive damage monitoring of concrete structures by means of Acoustic Emission (AE) requires multitransducers, multi-channel acquisition, high sampling frequency and long observation time. Owing to its propagation in concrete, the signal from AE reduces its amplitude during the propagation, and, consequently, some events can be lost due to lower signal intensity than the trigger level set on one sensor only. The innovative proposal discussed in the paper consists in the introduction of a Flat Amplifier and Trigger generator block (FAT) in order to generate a logical trigger when the AE is detected by any transducer. Experimental tests confirm the effectiveness of the FAT to acquire all the AE events and to increase the evaluation accuracy of damage indexes.
Rocznik
Strony
341--350
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Computer Science, Modelling, Electronic and System Science, University of Calabria, 87036 Rende – CS, Italy
  • Department of Civil Engineering, University of Calabria, 87036 Rende – CS, Italy
autor
  • Department of Computer Science, Modelling, Electronic and System Science, University of Calabria, 87036 Rende – CS, Italy
  • Department of Civil Engineering, University of Calabria, 87036 Rende – CS, Italy
Bibliografia
  • [1] Dudzik, S. (2013). Characterization of material defects using active thermography and an artificial neural network. Metrol. Meas. Syst., 20(3), 491-501.
  • [2] Dou, Y., Chang, X. (2012). In-situ automatic observations of ice thickness of seas. Metrol. Meas. Syst., 19(3), 583-592.
  • [3] Murugarajan, A., Samuel, G.L. (2011). Measurement, modeling and evaluation of surface parameter using capacitive-sensor-based measurement system. Metrol. Meas. Syst., 18(3), 403-418.
  • [4] Zawada-Tomkiewicz, A., Ściegienka, R. (2011). Monitoring of a micro-smoothing process with the use of machined surface images”. Metrol. Meas. Syst., 18(3), 419-428.
  • [5] Antoniuk, P., Strąkowski, M.R., Pluciński, J., Kosmowski, B.B. (2012). Non-destructive inspection of anticorrosion protective coatings using optical coherent tomography. Metrol. Meas. Syst., 19(2), 365-372.
  • [6] Zimroz, R., Urbanek, J., Barszcz, T., Bartelmus, W., Millioz, F., Martin, N. (2011). Measurement of instantaneous shaft speed by advanced vibration signal processing-application to wind turbine gearbox. Metrol. Meas. Syst., 18(4), 701-711.
  • [7] Ćwikliński, Ł., Kiciński, W. (2010). Management of memory in a real-time measurement system based on a signal processor. Metrol. Meas. Syst., 17(4), 589-598.
  • [8] Bowles, S. J. (1989). AE load-cycle dependence applied to monitoring fatigue crack growth under complex loading conditions. NDT International, 22, 7-13.
  • [9] Wang, Z. F., Li, J., Ke, W., Zheng, Y. S., Zhu, Z., Wang, Z. G. (1992). Acoustic emission monitoring of fatigue crack closure. Scripta Metallurgica et Materialia, 27, 1691-1694.
  • [10] Colombo, S., et al. (2005). AE energy analysis on concrete bridge beams. Materials and structures, 38, 851-856.
  • [11] Hoff, A. B. M, Arrington, M. (1985). Acoustic Emission Monitoring of a Node in an Off-Shore Platform, Spec Suppl J Acoust Emiss, 165-170.
  • [12] Lamonaca, F., Carrozzini, A. (2010). Monitoring of Acoustic Emissions in Civil Engineering Structures By Using Time Frequency Representation. Sensors & Transducers journal, 8, 42-53.
  • [13] National Instrument, “NI PCI-6110/6111 Specifications”.
  • [14] Lamonaca, F., Carrozzini, A., Grimaldi, D., Olivito, R.S. (2012). Acoustic Emission Monitoring of Damage Concrete Structures by Multi-Triggered Acquisition System. Proc. of I2MTC 2012 - IEEE International Instrum. and Measurement Technology Conference, Graz, Austria, 14-16 May, 2012.
  • [15] Burr-Brown Corporation, (1992). High Speed FET-Input INSTRUMENTATION AMPLIFIER.
  • [16] Analog Devices (2005) “Dual, High Speed ECL Comparators ADCMP563/ADCMP564”, Rev.5.
  • [17] Semiconductor Components Industries, LLC (2008). MC10EL01/D, Rev.6.
  • [18] National Instrument (2010) “NI FlexRIO FPGA Modules for PXI Express”.
  • [19] CEN - European Committee for Standardization (2003) Testing hardened concrete. Compressive strength of test specimens. UNI EN 12390-3, 2003.
  • [20] Muravin, B., Acoustic Emission Science and Technology, (2009). Journal of Building and Infrastructure Engineering.
  • [21] Archana, Nair, Cai, C. S., (2010). Acoustic emission monitoring of bridges: Review and case studies, Engineering Structures, 32, 1704-1714.
  • [22] Tan, A., Kaphle, M., Thambiratnam, D., (2009) Structural Health Monitoring of Bridges Using Acoustic Emission Technology, Proc. of 8th International Conference on Reliability, Maintainability and Safety, ICRMS 2009.
  • [23] Kaphle, M.R., Tan, A., Thambiratnam, D. P., Chan, T. H. T., (2011). Study Of Acoustic Emission Data Analysis Tools For Structural Health Monitoring Applications, J. Acoustic Emission, 29.
  • [24] De Santis, S., Tomor, A. K., (2013). Condition Monitoring Of Masonry Arch Bridges Using Acoustic Emission Technique. Proc. of 7th international conference on Arch and Bridge, Croatia, 2013.
  • [25] Tsangouri, E., Aggelis, D. G., Van Tittelboom, K., De Belie, N., Van Hemelrijck, D., (2013). Detecting the Activation of a Self-Healing Mechanism in Concrete by Acoustic Emission and Digital Image Correlation. ScientificWorldJournal.
  • [26] Kaphle, M. R., Tan, A., Thambiratnam, D. P., Chan, T. H. T., (2011). Review: Acoustic Emission Technique - Opportunities, Challenges And Current Work At Qut. Proc. Of. eddBE2011.
  • [27] B.S EN 13477-2:2001, “Non-destructive testing. Acoustic emission. Equipment characterization. Verification of operating characteristic”, 2001.
  • [28] Lamonaca, F., Grimaldi, D., (2012). Trigger Realignment by Networking Synchronized Embedded Hardware. IEEE Transaction on Instrumentation and Measurement, Vol.62, Issue 2, 38-49.
  • [29] Panin, S.V., Biakov, A. V., Grenke, V. V., Shakirov, I. V. (2008). Automated system for registration, processing and analysis of acoustic emission signals under deformation and fracture. Proc. of Third International Forum on Strategic Technologies. IFOST 2008.23-29 June 2008, 455-459.
  • [30] Chu-Shu Kao, N. F., Kaveh, M., Tewfik, A., Labuz, A. (2009). Averaged acoustic emission events for accurate damage localization. Proc. of IEEE Intern. Conf. on Acoustics, Speech and Signal Processing, ICASSP 19-24 April 2009, 2201-2204.
  • [31] Nair, A., Cai, C. S. (2010). Acoustic emission monitoring of bridges: Review and case studies, Engineering Structures, 32, 1704-1714.
  • [32] Blessing, J. A., Fowler, T. J., Strauser, F. E. (1992) Intensity analysis. Proc. of 4th Int Symp. on Acoustic Emission from Composite Materials, American Society for Nondestructive testing, Columbus (Ohio).
  • [33] Chotickai, P. (2001). Acoustic emission monitoring of prestressed bridge girders with premature concrete deterioration. Masters thesis. Austin (Texas): University of Texas.
Uwagi
EN
This work was partially supported by the Italian grant RIDITT, project DI.TR.IM.MIS “Diffusione e trasferimento di tecnologie ad imprese nel settore delle misure", funded by the Italian Ministry of Economic Development, and partially supported by RELUIS-DPC 2010-2013 Research Project-Research: Line n. 3 - Task 3.1 "Developments and analysis of new materials for the seismic reinforcement of masonry structures", coordinated by prof. L. Ascione and prof. A. Prota.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16b3ab01-85c9-4d5d-b3a1-d37ad7ad430e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.