Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents a new type of underactuated ground mobile robot called Caster Car. The platform consists of a front-driven and steered wheel and two uncontrolled rear caster wheels. The Caster Car model presented can be an interesting alternative for mobile robots that connects dynamic properties of hovercrafts and classical 4-wheeled cars. Underactuated properties of the Caster Car cause that classical proportional-derivative feedback control give the ability to affect only selected configuration variables. Three mathematical models of the Caster Car are proposed: a dynamic model with free-moving casters, a dynamic model with blocked casters, and a simplified hovercraft description. Models were tested during tracking tasks with demanding trajectory using selective and full-state control. This full state control was based on the computed torque technique with the pseudoinverse operation and proportional-derivative feedback. It gives the ability to suppress unstable behaviors of uncontrolled orientation but in cost of overall effect (higher position errors).
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
91--116
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wzory
Twórcy
autor
- Warsaw University of Technology, ul. Narbutta 84, 02-524 Warsaw, Poland
Bibliografia
- [1] A.M. Bloch: Nonholonomic mechanics and control. Springer, 2003.
- [2] S.W. Chesnutt: Swivel-caster, 1920. US Patent 1,341,630.
- [3] C.O. Christensen: Self-steering caster, 1981. US Patent 4,280,246.
- [4] J.R. Downing and L.G. Williams: Cart caster, 1981. US Patent 4,246,677.
- [5] L. Eldén: A weighted pseudoinverse, generalized singular values, and constrained least squares problems. BIT Numerical Mathematics, 22(4), (1982), 487-502, DOI: 10.1007/BF01934412
- [6] I. Fantoni and R. Lozano: Non-linear control for underactuated mechanical systems. Springer Science & Business Media, 2002.
- [7] S. Haddout, M. Ait Guennoun and Z. Chen: Engineering example of the constraint forces in non-holonomic mechanical: forklift-truck robot motion. Part I. Archives of Control Sciences, 28(3), (2018), 483-506, DOI: 10.24425/acs.2018.124713
- [8] R.N. Jazar: Vehicle dynamics theory and applications. Springer, New York; London, 2008.
- [9] S. Korczak: Tracking control of an underactuated rigid body with a coupling input force. Archives of Control Sciences, 24(3), (2014), 321-332.
- [10] S. Korczak: Dynamics and stability of underactuated systems with input coupling. PhD thesis, Warsaw University of Technology, Warsaw, 2016, (in Polish).
- [11] S. Korczak: Chaotic behaviors of an underactuated system in the trajectory tracking task. Archive of Applied Mechanics, 88(1-2), (2018), 111-120, DOI: 10.1007/s00419-017-1297-y
- [12] Y. Liu and H. Yu: A survey of underactuated mechanical systems. IET Control Theory Applications, 7(7), (2013), DOI: 10.1049/iet-cta.2012.0505
- [13] M. Mitsche: Dynamik der Kraftfahrzeuge: Antrieb und Bremsung. Springer, 1995, (in German).
- [14] U. Nagarajan, G. Kantor and R. Hollis: The ballbot: An omnidirectional balancing mobile robot. The International Journal of Robotics Research, 33(6), (2014), 917-930, DOI: 10.1177/0278364913509126
- [15] D. Pazderski: A robust smooth controller for a unicycle-like robot. Archives of Control Sciences, 28(1), (2018), 155-183, DOI: 10.24425/119081
- [16] J.M. Verhaeg and D. Brookes: Vehicle having wheels and castors, 1999. US Patent 5, 899, 475.
- [17] R.L. Williams, B.E. Carter, P. Gallina and G. Rosati: Dynamic model with slip for wheeled omnidirectional robots. IEEE Transactions on Robotics and Automation, 18(3), (2002), 285-293, DOI: 10.1109/TRA.2002.1019459
- [18] S. Zeghlache, D. Saigaa, K. Kara, A. Harrag and A. Bouguerra: Backstepping sliding mode controller improved with fuzzy logic: Application to the quadrotor helicopter. Archives of Control Sciences, 22(3), (2012), 315-342.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16b0c440-830c-451f-b46a-dd5e3f5646dd