PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wyładowanie mikrofalowe (915 MHz) dużej mocy w argonie pod ciśnieniem atmosferycznym

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
High power microwave discharge in argon (915 MHz) at atmospheric pressure
Języki publikacji
PL
Abstrakty
PL
W niniejszym artykule przedstawiono wyniki pomiarów spektroskopowych wyładowania mikrofalowego w argonie pod ciśnieniem atmosferycznym. Badania przeprowadzono dla wyładowania mikrofalowego podtrzymywanego mikrofalami o częstotliwości 915 MHz w mikrofalowym aplikatorze plazmy typu rezonator wnękowy. Na podstawie uzyskanych wyników określono temperaturę wzbudzenia elektronowego, temperaturę cząstek ciężkich plazmy oraz koncentracje elektronów.
EN
In this paper we present results of spectroscopic study of atmospheric pressure microwave argon plasma at high flow rate. The plasma was generated in resonant cavity type microwave plasma source operated at 915 MHz. The aim of research was determination of electron excitation temperature, plasma temperature and electron number density.
Rocznik
Tom
Strony
181--192
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • Instytut Maszyn Przepływowych im. R. Szewalskiego PAN w Gdańsku
autor
  • Instytut Maszyn Przepływowych im. R. Szewalskiego PAN w Gdańsku
  • Instytut Maszyn Przepływowych im. R. Szewalskiego PAN w Gdańsku Akademia Morska w Gdyni
Bibliografia
  • 1. Brablec A., Kapicka V., Sicha M., Klima M., Slavicek P. i in., The Hight Pressure Torch Discharge Plasma Source for Working in the Liquid Environmenet, International Symposium On High Pressure, Low Temperature Plasma Chemistry, Hakone VI, Cork, Ireland, 1998.
  • 2. Chemia plazmy niskotemperaturowej, red. K. Orłoś, WTN, Warszawa 1983.
  • 3. Czernichowski A., Metody spektralne wyznaczania temperatury plazmy termicznej, Postępy Fizyki, t. XV, z. 2, 1964.
  • 4. Hong Y., Shin D., Lee S., Kim Y., Lee B. i in., Generation of High-Power Torch Plasma by a 915-MHz Microwave System, IEEE Transactions on Plasma Science, Vol. 39, 2011, No. 10.
  • 5. Hrycak B., Jasiński M., Mizeraczyk J., Spectroscopic investigations of microwave microplasmas in various gases at atmospheric pressure, European Physical Journal D 60, 2010, s. 609–619.
  • 6. Iza F., Hopwood J., Split-Ring Resonator Microplasma: Microwave Model, Plasma Impedance and Power Efficiency, Plasma Sources Science Technology, Vol. 14, 2005, s. 397–406.
  • 7. Izarra Ch., UV OH spectrum used as a molecular pyrometer, Journal Physics D: Applied Physics Vol. 33, 2000, s. 1697–1704.
  • 8. Janca J., Tesar C., Spectral Diagnostics of Gliding Hight-Pressure Glow Discharges, International Symposium On Hight Pressure, Low Temperature Plasma Chemistry, Hakone V, Milovy, Czech Republic, 1996.
  • 9. Jasiński M., Mizeraczyk J., Zakrzewski Z., In Proceedings of the XVth International Conference on Gas Discharges and their Applications, Toulouse, France, 2004.
  • 10. Kang J.G., Kim H.S., Ahn S.W., Uhm H.S., Development of the RF Plasma Source at Atmospheric Pressure, Surface & Coating Technology, Vol. 171, 2003, s. 144–148.
  • 11. Kikuchi T., Hasegawa Y., Shirai H., RF Microplasma Jet at Atmospheric Pressure: Characterization and Application to Thin Film Processing, Journal Physics D: Applied Physics, Vol. 37, 2004, s. 1537–1543.
  • 12. Kim J., Terashima K., Microwave Excited Nonequilibrium Atmospheric Pressure Microplasmas for Polymer Surface Modification, Proc. APSPT-4, 2005, s. 324–327.
  • 13. Kopecki J., Kiesler D., Leins M., Schulz A., Walker M. i in., Investigations of a high volume atmospheric plasma torch at 915 MHz, Surface & Coatings Technology, Vol. 205, 2011, s. 342–346.
  • 14. Kopecki J., Kiesler D., Leins M., Schulz A., Walker M. i in., Investigations of a novel plasma torch at 915 MHz, 36th EPS Conference on Plasma Physics Sofia, Bulgaria, June 29–July 3, 2009 ECA Vol. 33E, O-5.065, 2009.
  • 15. Lazzaroni C., Chabert P., Rousseau A., Sadeghi N., Sheath and electron density dynamics in normal and self-pulsing regime of a micro hallow cathode discharge in argon gas, European Physical Journal D 60, 2010, s. 556–563.
  • 16. Rabat H., Izarra Ch., Check of OH rotational temperature using an interferometric method, Journal Physics D: Applied Physics, Vol. 37, 2004, s. 2371–2375.
  • 17. Sismanoglu B.N., Grigorov K.G., Caetano R., Rezende M.V.O., Hoyer Y.D., Spectroscopic measurements and electrical diagnostic of microhallow cathode discharges in argon flow at atmospheric pressure, European Physical Journal D 60, 2010, s. 505–516.
  • 18. Sismanoglu B.N., Grigorov K.G., Santos R.A., Caetano R., Rezende M.V.O. i in., Spectroscopic diagnostics and electric field measurements in the near-cathode region of an atmospheric pressure microplasma jet, European Physical Journal D 60, 2010, s. 479–487.
  • 19. Stonies R., Schermer S., Voges E., Broekaert J.A.C., A New Small Microwave Plasma Torch, Plasma Sources Science Technology, Vol. 13, 2004, s. 604–611.
  • 20. http://physics.nist.gov/PhysRefData/ASD/lines_form.html.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16afde1a-4b0f-46dc-ba52-fe4785719f66
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.