Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Bentonite clay was utilized in this research as adsorbent element to remove the lead and copper ions from wastewater. Series of tests were performed at multiple parameters, such as pH solution, initial concentration of lead and copper ions, adsorbent mass, and contact time. The greatest removal was attained at pH 5, adsorbent weight of 0.5 g, initial heavy metal concentration of 10 mg/l, and a contact time of 60 minutes. The results revealed that bentonite clay is suitable in the removal of metal ions from polluted water. The ion exchange rate of lead was faster than that of copper. The isotherm for the adsorption of the lead and copper ions on bentonite clay was confirmed by the Freundlich and Langmuir isotherms which offered good consequences. The results indicated that bentonite was utilized as an efficient ion exchange element for the removal of heavy metal ions from polluted water. Fourier Transformed Infrared Spectrophotometer (FTIR) images of bentonite clay before and after adsorption showed the imbibition of metal ions by bentonite clay.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
104--111
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
- Graduate Student, Environmental Engineering Department, University of Mustansiriyah, Baghdad, Iraq
- Department of Environmental Engineering, College of Engineering, Mustansiriyah University, Baghdad, Iraq
Bibliografia
- 1. Abbas M.N., Al-Madhhachi A.T., Esmael S.A. 2019. Quantifying soil erodibility parameters due to wastewater chemicals. Int. J. Hydrology Science and Technology, 9(5), 550–568.
- 2. Acharya J., Sahu J.N., Mohanty C.R., Meikap B.C. 2009. Removal of lead (II) from wastewater by activated carbon developed from Tamarind wood by zinc chloride activation. Chem. Eng. J, 149, 249262. https://doi.org/10.1016/j.cej.2008.10.029.
- 3. Benzaoui T., Selatnia A., Djabali D. 2017. Adsorption of copper (II) ions from aqueous solution using bottom ash of expired drugs incineration. Adsorption Science and Technology, 36(4), 026361741668509.
- 4. Bertagnolli C., Kleinübing S.J., Silva M.G.C. 2011. Preparation and characterization of a Brazilian bentonite clay for removal of copper in porous beds. Applied Clay Science, 53(1), 73-79. http://dx.doi.org/10.1016/j.clay.2011.05.002
- 5. Fu F., Wang Q. 2011. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manage, 92, 407–418.
- 6. Galindo L.S., Neto A.F., da Silva M.G.C., Vieira M.G.A. 2013. Removal of Cadmium (II) and Lead (II) Ions from Aqueous Phase on Sodic Bentonite. Materials Research, 16(2), 515–527. DOI: 10.1590/S1516–14392013005000007.
- 7. Gusain D., Srivastava V., Sharma Y. C. 2014. Kinetic and thermodynamic studies on the removal of Cu (II) ions from aqueous solutions by adsorption on modified sand. J. Ind. Eng. Chem., 20, 841–847.
- 8. Helena L., Chaves G., Tito G. A. 2011. Cadmium and copper adsorption on bentonite: effects of pH and particle size. Revista Ciencia Agronomica, 42(2), 278–284. DOI: 10.1590/S1806–66902011000200004.
- 9. Hannachi Y., Homri T., Boubaker T. 2013. Utilization of Tunisian Bentonite as Ion-Exchange And Sorbent Material In The Removal Of Lead From Aqueous Solutions. The holistic approach to environment, 3(3), 123–140.
- 10. Inglezakisa V.J., Stylianou M.A., Gkantzoua D., Loizidoua M.D. 2019. Removal of Pb (II) from aqueous solutions by using clinoptilolite and bentonite as adsorbents. Desalination. 210(1-3): 248-256.
- 11. Jiang M., Wang Q., Jin X., Chen Z. 2009. Removal of Pb (II) from aqueous solution using modified and unmodified kaolinite clay. Journal of hazardous materials, 170(1), 332–9.
- 12. Karapinar N., Donat R. 2009. Adsorption behaviour of Cu2+ a Cd2+ onto natural bentonite. Desalination, 249, 123–129.
- 13. Lacin O. Bayrak B., Korkut O., Sayan E. 2005. Modeling of adsorption and ultrasonic desorption of cadmium (II) and zinc (II) on local bentonite. Journal of Colloid and Interface Science, 292(02), 330–335.
- 14. Melichova Z., Hromada L. 2012. Adsorption of Pb2+ and Cu2+ Ions from Aqueous Solutions on Natural Bentonite. Polish Journal of Environmental Studies, 22(2), 457–464.
- 15. Mnasri-Ghnimi S., Frini-Srasra N. 2019. Removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays. Applied Clay Science, 179, 105151.
- 16. Mohan D., Pittman C. U. 2006. Activated carbons and low cost adsorbents for remediation of triand hexavalent chromium from water. J. Hazard. Mater, 137, 762-811. https://doi.org/10.1016/j.jhazmat.2006.06.060.
- 17. Mutter G.M., Al-Madhhachi A.T., Rashed R.R. 2017. Influence of soil stabilizing materials on lead polluted soils using Jet Erosion Tests. International Journal of Integrated Engineering, 9(1), 28–38.
- 18. Nassef E., Mahmoud A., Salah H., El-taweel Y. 2017. Removal of Copper Ions from Liquid Wastes Using Adsorption Technique. Int. J. Res. Ind. Eng., 6(3), 522–562.
- 19. Neto A.F., Vieira M. G.A., Silva M.G.C. 2012. Cu (II) adsorption on modified bentonitic clays: different isotherm behaviors in static and dynamic systems. Materials Research, 15(1), 114-124.
- 20. Ogbu I.C., Akpomie K.G., Osunkunle A.A., Eze S.I. 2019. Sawdust-kaolinite composite as efficient sorbent for heavy metal ions. Bangladesh Journal of Scientific and Industrial Research, 54(1), 99–110.
- 21. Potgieter J.H., Potgieter V.S.S., Kalibantonga P.D. 2006. Heavy metals removal from solution by palygorskite clay. Clay Minerals Eng., 19, 463470. DOI: 10.1016/j.mineng.2005.07.004.
- 22. Ding S., Sun Y., Yang C., Xu B. 2009. Removal of copper from aqueous solutions by bentonites and the factors affecting it. Mining Science and Technology (China), 19(4), 489–492.
- 23. Ugwu I., Igbokwe O.A. 2019. Sorption of Heavy Metals on Clay Minerals and Oxides: A Review. Advanced Sorption Process Applications, Serpil Edebali, IntechOpen. DOI: 10.5772/intechopen.80989.
- 24. Zuzana, M., Michaela, H. 2015. Removal of Cu (II) Ions from Aqueous Solutions by Adsorption onto Natural Bentonites. Solid State Phenomena, 244, 205–212. DOI: 10.4028/www.scientific.net/SSP.244.205.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16ae6cfc-4341-48eb-b606-60d51198ab4e