PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Microstructure Evolution Mechanism of AISI 1045 Steel Under High Speed Deformation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
AISI 1045 steel has the characteristics of high strain rate, large strain, and sharp rise in temperature during high-speed deformation process, resulting in a concentrated deformation band and fine structure. In this work, the microstructure of submicron-sized grains in AISI 1045 steel material formed under 106 s-1 during a high speed cutting process was examined. To reveal the dynamic evolution mechanism of the AISI 1045 microstructure, the continuous dynamic recrystallization theory was introduced. The results show a high dislocation density which favor the formation of small angle grain boundaries during the high speed cutting process. Kinetics calculations that use continuous dynamic recrystallization mechanisms prove that the recrystallization size is constant when the strain rate increases from 103 s-1 to 106 s-1, and the transition time is reduced from 6×10-5 s to 4×10-8 s. The recrystallization grains were gradually formed during the deformation of the material, not generated after the deformation.
Twórcy
autor
  • Resource Application and Alloy Materials Division, China Iron and Steel Research Institute Group, Beijing, 100081, P.R. China
  • Resource Application and Alloy Materials Division, China Iron and Steel Research Institute Group, Beijing, 100081, P.R. China
autor
  • Resource Application and Alloy Materials Division, China Iron and Steel Research Institute Group, Beijing, 100081, P.R. China
autor
  • Tangshan Normal University, School of Physical Science and Technology, Tangshan, 063000, P.R. China
autor
  • Yibin University, Department of Materials and Chemical Engineering, Yibin, 644000, P.R. China
autor
  • Yangtze Normal University, Institute of Chemical Engineering, Chongqing, 408100, P.R. China
autor
  • MCC Huatian Engineering & Technology Corporation, Nanjing, 210019, P.R. China
autor
  • Yangtze Normal University, Institute of Chemical Engineering, Chongqing, 408100, P.R. China
autor
  • School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P.R. China
autor
  • North China University of Science and Technology, College of Metallurgy and Energy, Tangshan, 063210, P.R. China
Bibliografia
  • [1] M.T. Perez-Prado, J.A. Hines, K.S. Vecchio, Microstructural evolution in adiabatic shear bands in Ta and Ta-W alloys, Acta Mater. 49 (15), 2905-2917 (2001). DOI: https://doi.org/10.1016/S1359-6454(01)00215-4
  • [2] J.B. Li, J. Lu, C.Y. Chen, J.Y. Ma, X.P. Liao, Tool wear state prediction based on feature-based transfer learning, Int. J. Adv. Manuf. Tech. 113 (11/12), 3283-3301 (2021). DOI: https://doi.org/10.1007/s00170-021-06780-6
  • [3] D. Zhang, X.M. Zhang, G.C. Nie, Z.Y. Yang, H. Ding, In situ imaging based thermo-mechanical analysis of built-up edge in cutting process, J. Manuf. Process. 71, 450-460 (2021). DOI: https://doi.org/10.1016/j.jmapro.2021.09.040
  • [4] D. Ambrosio, A.Tongne, V. Wagner, G. Dessein, O. Cahuc, A new damage evolution criterion for the coupled Eulerian-Lagrangian approach: Application to three-dimensional numerical simulation of segmented chip formation mechanisms in orthogonal cutting. J. Manuf. Process. 73, 149-163 (2022). DOI: https://doi.org/10.1016/j.jmapro.2021.10.062
  • [5] T.E.F. Silva, A.V.L. Gregório, A.M.P. De Jesus, P.A.R. Rosa, An Efficient Methodology towards Mechanical Characterization and Modelling of 18Ni300 AMed Steel in Extreme Loading and Temperature Conditions for Metal Cutting Applications, J. Manuf. Mater. Process. 5 (3), 83 (2021). DOI: https://doi.org/10.3390/jmmp5030083
  • [6] V.F. Nesterenko, M.A. Meyers, J.C. Lasalvia, M.P. Bondar, Y.J. Chen, Y.L. Lukyanov, Shear localization and recrystallization in high-strain, high-strain-rate deformation of tantalum, Mater. Sci. Eng. A. 229 (1-2), 23-41 (1997). DOI: https://doi.org/10.1016/S0921-5093(96)10847-9
  • [7] D. Zhang, X.M. Zhang, G.C. Nie, Z.Y. Yang, H. Ding, Characterization of material strain and thermal softening effects in the cutting process, Int. J. Mach. Tool. Manu. 160, 103672 (2021). DOI: https://doi.org/10.1016/j.ijmachtools.2020.103672
  • [8] C. Courbon, T. Mabrouki, J. Rech, D. Mazuyer, F. Perrard, E. D´Eramo, Further insight into the chip formation of ferritic-pearlitic steels: Microstructural evolutions and associated thermomechanical loadings, Int. J. Mach. Tool. Manu. 77, 34-46 (2014). DOI: https://doi.org/10.1016/j.ijmachtools.2013.10.010
  • [9] T. Zhou, L. He, Z.F. Zou, F.L. Du, J.X. Wu, P.F. Tian, Three-dimensional turning force prediction based on hybrid finite element and predictive machining theory considering edge radius and nose radius, J. Manuf. Process. 58, 1304-1317 (2020). DOI: https://doi.org/10.1016/j.jmapro.2020.09.034
  • [10] S.V. Subramanian, H.O. Gekonde, G. Zhu, X. Zhang, Role of microstructural softening events in metal cutting, Mach. Sci. Technol. 6 (3), 353-364 (2002). DOI: https://doi.org/10.1081/mst-120016250
  • [11] M. Storchak, P. Rupp, H. Möhring, T. Stehle, Determination of Johnson-Cook Constitutive Parameters for Cutting Simulations, Metals 9 (4), 473 (2019). DOI: https://doi.org/10.3390/met9040473
  • [12] M. Stojković, M. Madić, M. Trifunović, R. Turudija, Determining the Optimal Cutting Parameters for Required Productivity for the Case of Rough External Turning of AISI 1045 Steel with Minimal Energy Consumption, Metals 12, 1793 (2022). DOI: https://doi.org/10.3390/met12111793
  • [13] J. R. Xiao, Z. Zhao, X.C. Xie, Z.W. Liang, Z.Y. Liu, X.C. Liu, R.Z. Tang, Micromorphology, Microstructure, and Wear Behavior of AISI 1045 Steels Irregular Texture Fabricated by Ultrasonic Strengthening Grinding Process, Metals 12, 1027 (2022). DOI: https://doi.org/10.3390/met12061027
  • [14] Q. Lu, C. Zhang, W. Wang, S. Jiang, A. Lee, Y. Tabassam, J. Jiang, Reveal the Viscoplastic Behaviour and Microstructure Evolution of Stainless Steel 316L, Materials 15, 7064 (2022). DOI: https://doi.org/10.3390/ma15207064
  • [15] L. Wang, L.K. Ji, K. Yang, X.X. Gao, H.Y. Chen, Q. Chi, The Flow Stress-Strain and Dynamic Recrystallization Kinetics Behavior of High-Grade Pipeline Steels, Materials 15, 7356 (2022). DOI: https://doi.org/10.3390/ma15207356
  • [16] P.L.B. Oxley, Mechanics of Machining: an Analytical Approach to Assessing Machinability, England 1989.
  • [17] B. Medina-Clavijo, J. Rafael-Velayarce, E. Modin, M. Saez-de-Buruaga, D. Soler, C. Motz, P.J. Arrazola, A. Chuvilin, Mechanical properties of friction induced nanocrystalline pearlitic steel, Nature. 12, 12591 (2022). DOI: https://doi.org/10.21203/rs.3.rs-1332231/v1
  • [18] T. Morikawa, K. Higashida, T. Sato, Fine-grained structures developed along grain boundaries in a cold-rolled austenitic stainless steel, ISIJ int. 42 (12), 1527-1533 (2022). DOI: https://doi.org/10.2355/isijinternational.42.1527
  • [19] W. Cai, Y.Q. Li, L. Li, K.H. Lai, S. Jia, J. Xie, Y.H. Zhang, L.K. Hu, Energy saving and high efficiency production oriented forward-and-reverse multidirectional turning: Energy modeling and application, Energy 252, 123981.1-12 (2022). DOI: https://doi.org/10.1016/j.energy.2022.123981
  • [20] A. Awale, K. Inamdar, Multi-objective optimization of high-speed turning parameters for hardened AISI S7 tool steel using grey relational analysis, J. Braz. Soc. Mech. Sci. 42 (7), 1-17 (2020). DOI: https://doi.org/10.1007/s40430-020-02433-z
  • [21] Z.Y. Yang, X.M. Zhang, G.C. Nie, D. Zhang, A comprehensive experiment-based approach to generate stress field and slip lines in cutting process, J. Manuf. Sci. Eng. 143 (7), 071014 (2021). DOI: https://doi.org/10.1115/1.4049848
  • [22] Q.L. Yong, The Second Phase of Steel, Beijing 2006.
  • [23] C.J. Shi, W.M. Mao, X.G. Chen, Evolution of activation Energy during hot deformation of AA7150 aluminum alloy, Mater. Sci. Eng. A. 571, 83-91 (2013). DOI: https://doi.org/10.1016/j.msea.2013.01.080
  • [24] S. Gourdet, F. Montheillet, A model of continuous dynamic recrystallization, Acta Mater. 51 (9), 2685-2699 (2003). DOI: https://doi.org/10.1016/S1359-6454(03)00078-8
  • [25] X.L. Liang, Z.Q. Liu, B. Wang, Multi-pattern failure modes and wear mechanisms of WC-Co tools in dry turning Ti-6Al-4V, Ceram. Int. 46, 24512-24525 (2020). DOI: https://doi.org/10.1016/j.ceramint.2020.06.238
  • [26] U. Messerschmidt, Dislocation dynamics during plastic deformation, Germany 2010.
  • [27] H. Chouhad, Towards online metrology for proactive quality control in smart manufacturing. PhD thesis, Hesam University, Paris, tel-03675240, May.
  • [28] Q. Li, Y.B. Xu, Z.H. Lai, L.T. Shen, Y.L. Bai, A model of dynamic recrystallisation in alloys during high strain plastic deformation, J. Mater. Sci. Technol. 15 (5), 435-438 (1999).
  • [29] R.W. Maruda, S. Wojciechowski, N. Szczotkarz, S. Legutko, M. Mia, M.K. Gupta, P. Nieslony, G.M. Krolczyk, Metrological analysis of surface quality aspects in minimum quantity cooling lubrication. Measurement 171, 108847 (2021). DOI: https://doi.org/10.1016/j.measurement.2020.108847
  • [30] Z.K. Ye, Y.L. Wu , G.C. Ma, H. Li, Z.J. Cai, Y.L. Wang, Visual high-precision detection method for tool damage based on visual feature migration and cutting edge reconstruction, Int. J. Adv. Manuf. Technol. 114 (5/6), 1341-1358 (2021). DOI: https://doi.org/10.1007/s00170-021-06919-5
  • [31] Z.A.M. Tagiuri, T.M. Dao, A.M. Samuel, V. Songmene, Numerical Prediction of The Performance of Chamfered and Sharp Cutting Tools during orthogonal Cutting of AISI 1045 Steel, Processes 10 (11), 2171 (2022). DOI: https://doi.org/10.3390/pr10112171
  • [32] H. Jirková, K. Rubešová, Š. Jeníček, D. Hradil, L. Kučerová, Improving the Wear Resistance of Ledeburitic Tool Steels by a Combination of Semi-Solid and Cryogenic Processing, Metals 12 (11), 1869 (2022). DOI: https://doi.org/10.3390/met12111869
Uwagi
1. This research was supported by the Project of the National Natural Science Foundation of China (Grant No. U1960101, No. 51874272 and No. 52111540265), Sichuan Science and Technology Program (No. 2021YJ0548), Chongqing Municipal Natural Science Foundation (cstc2020jcyj-msxmX0060), Panzhihua Science and Technology Project (Grant No. 2020CY-G-15), the Open Project of the State Key Laboratory of Advanced Metallurgy (KF20-03), Key Laboratory of Comprehensive Utilization of Vanadium and Titanium Resources in Sichuan Province (2019FTSZ06), the PhD Fund of Panzhihua University, and Funded by the State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization; Open Foundation of State Key Laboratory of Mineral Processing (No. BGRIMM-KJSKL-2022-23) and Open Foundation of State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization (No. CNMRCUKF2205), Scientific Research Key Project of Yibin University (412-0219020202); The Education and Teaching Reform Project of Tangshan Normal University of China (Grant No. 2019JG020); Sichuan Vanadium and Titanium Industry Development Research Center (2020VTCY-Y-02); Sichuan Vanadium Titanium Material Engineering Technology Research Center (2022FTGC06).
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16ad6a76-6bb8-43dc-9822-af88f972afeb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.