Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article presents and describes the operational capabilities of an onboard GNSS receiver to determine the reliability of the in-flight navigation parameters. An analysis was made of the operation reliability of an autonomous single-frequency Thales Mobile Mapper receiver in air navigation as compared to the technical operation of a dual-frequency Topcon HiperPro receiver. To this end, this work contains a comparison of the aircraft flight navigation parameters based on readings obtained from the Thales Mobile Mapper and Topcon HiperPro receivers. In particular, the comparison concerned the reliability of coordinate determination and flight speed parameters of an aircraft. The research experiment was conducted using a Cessna 172 aircraft, a property of the Military University of Aviation in Dęblin, Poland. Technical operation of the GNSS satellite receivers was tested in the flights of the Cessna 172 aircraft around the EPDE military airport in Dęblin. Based on the results obtained from the tests, it was found that the operational reliability of the Thales Mobile Mapper in the operational phase of the in-flight test ranged from -3.8 to +6.9 m in the XYZ geocentric frame and from -2.2 to +8.1 m in the BLh ellipsoidal frame, respectively. On the other hand, the accuracy of the Cessna 172 aircraft positioning when using the Thales Mobile Mapper receiver was higher than 1.7 m in the XYZ geocentric frame and higher than 2 m in the BLh ellipsoidal frame, respectively. Furthermore, the reliability of the Cessna 172 flight speed determination was from -3.4 to +2.4 m/s.
Słowa kluczowe
Rocznik
Tom
Strony
75--88
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
- Military University of Aviation, Institute of Navigation, Dywizjonu 303 nr 35 Street, 08-521 Dęblin, Poland
autor
- Military University of Aviation, Institute of Navigation, Dywizjonu 303 nr 35 Street, 08-521 Dęblin, Poland
Bibliografia
- 1. Banaszek K., M. Malarski. 2009. “Ryzyko operacji lotniskowych a dokładność pozycjonowania (RNP)”. Problemy eksploatacji 4: 71-78. [In Polish: „Risk of airport operations and positioning accuracy (RNP)”].
- 2. Bistrović Miroslav, Domagoj Komorčec. 2015. “Impact of E-Navigation on ECDIS Development as a Decision Support System”. Nase More 62(1): 30-38.
- 3. Ciećko A., G. Grunwald. 2017. “Examination of autonomous GPS and GPS/EGNOS integrity and accuracy for aeronautical applications”. Periodica Polytechnica Civil-Engineering, 61(4): 920-928. DOI: https://doi.org/10.3311/PPci.10022.
- 4. Chai T., R.R. Draxler. 2014. “Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature”. Geoscientific Model Development 7: 1247-1250. DOI: 10.5194/gmd-7-1247-2014.
- 5. Ćwiklak J., H. Jafernik. 2010. “The monitoring system for aircraft and vehicles of public order services based on GNSS”. Annual of Navigation 16: 15-24.
- 6. Fellner A., H. Jafernik, P. Trómiński. 2011. “RNAV GNSS niezbędnym etapem implementacji LUN i szansa dla polskiego General Aviation”. Prace Instytutu Lotnictwa 211: 57-67. [In Polish: „RNAV GNSS is a necessary stage of LUN implementation and an opportunity for Polish General Aviation”].
- 7. Grzegorzewski M., W. Jaruszewski, A. Fellner, S. Oszczak, A. Wasilewski, Z. Rzepecka, J. Kapcia, T. Popławski. 1999. “Preliminary results of DGPS/DGLONASS aircraft positioning in flight approaches and landings”. Annual of Navigation 1: 41-53.
- 8. He K. 2015. DGNSS Kinematic Position and Velocity Determination for Airborne Gravimetry. Scientific Technical Report 15/04, GFZ German Research Centre for Geosciences. DOI: 10.2312/GFZ.b103-15044.
- 9. Hejmanowska B., R. Palm, S. Oszczak, A. Ciećko. 2005. Validation of methods for measurement of land parcel areas. Draft final report, AGH University of Science and Technology, Cracow.
- 10. International Civil Aviation Organization. 2016. ICAO Standards and Recommended Practices (SARPS). Annex 10. Volume I (Radionavigation aids). 2006. Available at: http://www.ulc.gov.pl/pl/prawo/prawomi%C4%99dzynarodowe/206-konwencje.
- 11. Kadaj R. 2009. „Jak rachować pomiary GPS?”. Geodety 1(19): 10-13. [In Polish: „How to count GPS measurements?”].
- 12. Magiera J. 2015. Analiza i badanie systemu antyspoofingowego GPS. Doctoral dissertation. Gdańsk University of Technology. [In Polish: Analysis and testing of the GPS anti-spoofing system]. 13. Masnicki R., C. Specht, J. Mindykowski, P. Dąbrowski, M. Specht. 2020. “Accuracy Analysis of Measuring X-Y-Z Coordinates with Regard to the Investigation of the Tombolo Effect”. Sensors 20: 1167.
- 14. Osada E. 2001. Geodezja. Wrocław: Publishing House of the Wrocław University of Technology. ISBN 83-7085-663-2.
- 15. Rodríguez-Bilbao I., S.M. Radicella, G. Rodríguez-Caderot, M. Herraiz. 2015. “Precise point positioning performance in the presence of the 28 October 2003 sudden increase in total electron content”. Space Weather 13: 698-708. DOI: 10.1002/2015SW001201.
- 16. Sanz Subirana J., J.M. Juan Zornoza, M. Hernandez-Pajares. 2013. GNSS Data Processing, Volume I: Fundamentals and Algorithms. ESA Communications, ESTEC. Noordwijk, Netherlands. ISBN: 978-92-9221-886-7. 17. Specht M. 2015. “Estimating accuracy of defining position by EGNOS and DGPS systems based on multi-year measurements in 2006-2014”. Polski Przegląd Kartograficzny 47(2): 127136.
- 18. Świątek A., L. Jaworski, Ł. Tomasik. 2017. “EGNOS Monitoring Prepared in Space Research Centre P.A.S. for SPMS Project”. Artificial Satellites 52(4): 109-120. DOI: 10.1515/arsa-2017-0010.
- 19. Takasu T. 2013. RTKLIB ver. 2.4.2 Manual. RTKLIB: An Open Source Program Package for GNSS Positioning.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16ac59d6-834e-45f7-b15a-700998e3ee12