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Optimal and suboptimal control of a standard
Brownian motion

MARIO LEFEBVRE

The problem of optimally controlling a standard Brownian motion until a fixed final time is
considered in the case when the final cost function is an even function. Two particular problems
are solved explicitly. Moreover, the best constant control as well as the best linear control are
also obtained in these two particular cases.
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1. Introduction

In a series of papers (see Lefebvre and Zitouni (2012) and (2014), for instance),
the author considered the problem of optimally controlling a one-dimensional diffusion
process until it enters a given termination set. More precisely, assume that the controlled
diffusion process {X(t), t  0} satisfies the stochastic differential equation

dX(t) = m[X(t)]dt +h[X(t)]u[X(t)]dt +{v[X(t)]}1/2 dB(t), (1)

in which u(·) is the control variable, m(·), h(·) and v(·)> 0 are Borel measurable func-
tions, and {B(t), t  0} is a standard Brownian motion. We want to find the control u∗

that minimizes the expected value of the cost function

J(x) =

T (x)∫
0

{
1
2

q0 u2[X(t)]+λ
}

dt +K[X(T (x)),T (x)], (2)

where q0 > 0 and λ ̸= 0 are constants, K is a general termination cost function and T (x)
is a random variable defined by

T (x) = inf{t > 0 : X(t) = d1 or d2 | X(0) = x ∈ (x1,x2)}. (3)
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384 M. LEFEBVRE

The set of admissible controls consists of Borel measurable functions.
This type of problem, known as LQG homing (see Whittle, 1982) has also been con-

sidered recently by Makasu (2013), in which an explicit solution to a two-dimensional
problem is presented.

In general, in the problems that could be solved explicitly so far, the function K(·, ·)
was set equal to zero. Then, if the constant λ is positive, the aim is to make the diffusion
process leave the continuation region as soon as possible (taking the quadratic control
costs into account). When λ is negative, the optimizer tries to maximize the time spent
by the controlled process in the continuation region.

In the current paper, we assume that {X(t), t  0} is a controlled standard Brown-
ian motion and we replace the random variable T (x) by a fixed constant t f . Moreover,
instead of giving a penalty that is proportional to the time spent by {X(t), t  0} in the
continuation region, we assume that λ is equal to zero and we choose the termination
cost function K in such a way that one is penalized if X(t f ) is far from the objective.

In the next section, the problem set up above will be solved explicitly for two partic-
ular functions K. Then, in Section 3, we will consider the problem of obtaining the best
constant control as well as the best linear control in the problems solved in Section 2.
The expected costs obtained with these suboptimal solutions will be compared with the
value function, that is, the expected cost when one uses the optimal control. Finally, a
few concluding remarks will be made in Section 4.

2. Optimal control of a standard Brownian motion

Let {X(t), t  0} be the process defined by the stochastic differential equation

dX(t) = b0 u[X(t), t]dt +dB(t), (4)

where b0 ̸= 0 is a constant. The cost function is

J(x, t0) =

t f∫
t0

1
2

q0 u2[X(t), t]dt +K[X(t f )], (5)

where x = X(t0).
We consider an important problem known in control theory as a regulator problem.

In this type of problem, the optimizer is trying to keep the controlled process as close
as possible to a constant c, taking the quadratic control costs into account. In the case of
a controlled standard Brownian motion, we can assume, without loss of generality, that
c = 0. Hence, the non-negative function K(·) should be such that K[X(t f )] is minimum
when X(t f ) is equal to zero, and should be strictly increasing with |X(t f )|. Moreover, we
assume that K(·) is an even function and that

lim
X(t f )→∞

K[X(t f )] = ∞. (6)
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To solve our optimal control problem, we can use dynamic programming. We define
the value function

F(x, t0) = inf
u[X(t),t], t0¬t¬t f

E[J(x, t0)]. (7)

This function satisfies the Hamilton-Jacobi-Bellman (HJB) equation

0 = inf
u(x,t0)

{
1
2

q0 u2(x, t0)+Ft0(x, t0)+b0 u(x, t0)Fx(x, t0)+
1
2

Fxx(x, t0)
}
. (8)

It follows that the optimal control u∗(x, t0) is given by

u∗(x, t0) =−b0

q0
Fx(x, t0). (9)

Substituting this expression into the HJB equation, we obtain the non-linear second-
order partial differential equation

Ft0(x, t0)−
b2

0
2q0

[Fx(x, t0)]2 +
1
2

Fxx(x, t0) = 0. (10)

Actually, F also depends on t f , and we have the boundary condition

F(x, t0) = K(x) if t f = t0. (11)

We assumed above that the function K[X(t f )] is chosen to be strictly increasing with
|X(t f )| and to satisfy the condition in (6). It also implies that the following conditions
hold:

lim
x→±∞

F(x, t0) = ∞. (12)

Indeed, since t f is finite, if we start at ±∞ the value of |X(t f )| should also be infinite,
unless the optimizer uses an infinite control u. At any rate, the conditions in (12) will
then be satisfied.

Moreover, by symmetry, the value function F(x, t0) should be such that F(−x, t0) =
F(x, t0). Since it must be strictly increasing with |x|, and Fx(x, t0) is assumed to exist, it
has a minimum at x = 0.

Next, we can greatly simplify our problem by defining

G(x, t0) = e−F(x,t0)/α, (13)

with
α :=

q0

b2
0
. (14)

Indeed, we find that the function G satisfies the linear second-order partial differential
equation

Gt0(x, t0)+
1
2

Gxx(x, t0) = 0, (15)
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386 M. LEFEBVRE

subject to
G(x, t0) = e−K(x)/α if t f = t0. (16)

Now, let L(ω, t0) denote the Fourier transform with respect to the variable x of the
function G(x, t0). That is,

L(w, t0) := F {G(x, t0)}=
∞∫

−∞

e−iwx G(x, t0)dx. (17)

Because the constant α is positive (and we assumed that the even function K(·) is such
that the condition in (12) is satisfied), we can write that

lim
x→±∞

G(x, t0) = 0. (18)

Then we deduce from Eq. (15) that L(ω, t0) satisfies the first-order differential equation

Lt0(w, t0)−
w2

2
L(w, t0) = 0, (19)

whose general solution is
L(w, t0) = c0 ew2t0/2, (20)

in which the constant c0 is uniquely determined from the condition (see Eq. (16))

L(w, t0) = F {e−K(x)/α} if t f = t0. (21)

We may thus write that
c0 = e−w2t f /2 L(w, t f ), (22)

so that
L(w, t0) = ew2(t0−t f )/2 L(w, t f ) = ew2(t0−t f )/2 F {e−K(x)/α}. (23)

We can now state the following result.

Proposition 1 If the even function K is chosen in such a way that the condition in (6) is
satisfied, then the optimal control u∗(x, t0) is given by

u∗(x, t0) =−α
b0

q0

Gx(x, t0)
G(x, t0)

=− 1
b0

d
dx F −1{L(w, t0)}
F −1{L(w, t0)}

. (24)

Moreover, the value function is

F(x, t0) =−q0

b2
0

ln
{

F −1{ew2(t0−t f )/2 L(w, t f )}
}
. (25)
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2.1. Particular cases

I) The first particular case that we consider is the one for which

K[X(t f )] = X2(t f ). (26)

Furthermore, we set b0 = q0 = 1, so that α = 1.

Remark. Because the control costs are also quadratic, the optimal control u∗(x, t0)
should be a linear function of x.

With this choice for the even function K, we have

lim
X(t f )→∞

K[X(t f )] = ∞,

as required, so that we can use Proposition 1. We have

L(w, t f ) = F {e−x2}=
√

πe−w2/4. (27)

It follows that
L(w, t0) = ew2(t0−t f )/2√πe−w2/4. (28)

We find that

G(x, t0) = F −1{L(w, t0)}=
1√

1+2(t f − t0)
exp
{
− x2

2(t f − t0)+1

}
, (29)

which implies that the value function is given by

F(x, t0) =
1
2

ln [1+2(t f − t0)]+
x2

2(t f − t0)+1
(30)

and the optimal control is

u∗(x, t0) =−Fx(x, t0) =− 2x
2(t f − t0)+1

. (31)

Remarks. (i) We see that the optimal control is indeed a linear function of x, as expected.
(ii) The function F(x, t0) is symmetrical with respect to 0 and has a minimum at the
origin, as it should.

II) We now choose the following termination cost function:

K[X(t f )] = |X(t f )|, (32)
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and we still take b0 = q0 = 1. Again, we can appeal to Proposition 1. This time, we find
that

L(w, t f ) = F {e−|x|}= 2
1+w2 , (33)

so that
L(w, t0) = ew2(t0−t f )/2 2

1+w2 . (34)

We can invert the Fourier transform to obtain the function G:

G(x, t0) =
1
2

e(t f−t0)/2

{
e−x erf

(
x+ t0 − t f√

2(t f − t0)

)
+2 cosh(x)

−ex erf

(
x+ t f − t0√

2(t f − t0)

)}
, (35)

where erf denotes the error function. From this expression for G, it is a simple matter to
calcule the value function

F(x, t0) = − ln(2)−
t f − t0

2
− ln

{
e−x erf

(
x+ t0 − t f√

2(t f − t0)

)
+2 cosh(x)

−ex erf

(
x+ t f − t0√

2(t f − t0)

)}
(36)

and the optimal control

u∗(x, t0) =−
erf
(

x+t0−t f√
2 (t f−t0)

)
e−x −2 sinh(x)+ erf

(
x+t f−t0√
2 (t f −t0)

)
ex

erf
(

x+t0−t f√
2 (t f −t0)

)
e−x +2 cosh(x)− erf

(
x+t f −t0√
2 (t f−t0)

)
ex
. (37)

We can check that the value function is symmetrical with respect to 0 and has a
minimum at the origin. It follows that u∗(0, t0) = 0, which is logical.

We see that a seemingly almost equivalent problem leads to a much more compli-
cated optimal solution. In the next section, we will compute the best linear control for
this particular problem. We will also compute the best constant control for both par-
ticular cases presented above, as well as the expected cost when the optimizer uses no
control at all. The various expected costs obtained by using all these suboptimal controls
will then be compared to the value function in special instances.

3. Suboptimal solutions to our problems

First, we will compute the expected cost when the optimizer uses no control at all,
so that u[X(t), t]≡ 0. Denoting the controlled process in this case by {X0(t), t  t0} and
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the cost function by J0(x, t0), we have

E[J0(x, t0)] = E [K[X0(t f )]] . (38)

Moreover, as is well known, X0(t f ) has a Gaussian distribution with mean X0(t0) = x and
variance t f − t0. It follows that

E
[
X2

0 (t f )
]
= t f − t0 + x2. (39)

Now, if Z ∼ N(µ,σ2), we find that

E [|Z|] =−µ+

√
2
π

σ exp
{
− µ2

2σ2

}
+2µΦ(µ/σ), (40)

where Φ denotes the distribution function of the N(0,1) random variable. Making use of
this formula, we obtain that

E [|X0(t f )|] =−x+

√
2(t f − t0)

π
exp
{
− x2

2(t f − t0)

}
+2xΦ

(
x

√
t f − t0

)
. (41)

Next, we will compute the best constant control for the two problems considered in
the previous section. If u[X(t), t]≡ c, denoting the controlled process by Xc(t), we have

dXc(t) = cdt +dB(t). (42)

Then {Xc(t), t  t0} is a Wiener process with drift c and variance parameter 1. It follows
that, starting from Xc(t0) = x,

Xc(t)∼ N(x+ c(t f − t0), t f − t0). (43)

Hence, we may write that the expected value of the cost function (which we denote by
Jc(x, t0) when u[X(t), t]≡ c) is given by

E[Jc(x, t0)] =
1
2

c2 (t f − t0)+E [K[Xc(t f )]] . (44)

Thus, if K[Xc(t f )] = X2
c (t f ),

E[Jc(x, t0)] =
1
2

c2 (t f − t0)+(t f − t0)+ [x+ c(t f − t0)]2, (45)

while in the case when K[Xc(t f )] = |Xc(t f )|, we obtain (see Eq. (40)) that

E[Jc(x, t0)] =
1
2

c2 (t f − t0)− x− c(t f − t0)

+

√
2(t f − t0)

π
exp
{
−
[x+ c(t f − t0)]2

2(t f − t0)

}
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390 M. LEFEBVRE

+2 [x+ c(t f − t0)]Φ
(

x+ c(t f − t0)√
t f − t0

)
. (46)

The best constant control is determined by finding the value of c that minimizes
E[Jc(x, t0)]. In the first case, we have

d
dc

E[Jc(x, t0)] = c(t f − t0)+2 [x+ c(t f − t0)](t f − t0), (47)

so that the best constant c∗ is given by

c∗ =− 2x
1+2(t f − t0)

. (48)

The expected cost becomes

E[Jc∗(x, t0)] =
x2

1+2(t f − t0)
+ t f − t0. (49)

Remarks. (i) We can check that this value of the constant c corresponds indeed to a
minimum for the expected cost. (ii) We see that if we start at Xc(t0) = 0, then the best
constant is c∗ = 0, so that E[Jc∗(x, t0)] reduces to E[J0(x, t0)]. (iii) The value of c∗ depends
on x. However, the control will not change between t0 and t f ; that is, u[X(t), t] = c∗ for
all values of t ∈ [t0, t f ].

Now, writing
∆t := t f − t0, (50)

we find that the optimal constant c when K[Xc(t f )] = |Xc(t f )| is such that (after simplifi-
cation)

0 =
d
dc

E[Jc(x, t0)] = c∆t −∆t +2∆t Φ
(

x+ c∆t√
∆t

)
. (51)

Hence, c∗ satisfies the equation

c∗−1+2Φ
(

x+ c∗∆t√
∆t

)
= 0. (52)

Using a mathematical software, this equation can be solved for any x and ∆t, which
then enables us to compute the expected cost explicitly. A numerical example will be
provided at the end of this section.

The most difficult task is to determine the best linear control when K[Xc(t f )] =
|Xc(t f )|. Since we were able to obtain the exact optimal control u∗(x, t0) in this case,
we could try to find a linear approximation to u∗(x, t0). However, here we can find the
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exact constant a such that ua[X(t), t] := aXa(t) minimizes the expected value of the cost
function

Ja(x, t0) :=

t f∫
t0

1
2

a2 X2
a (t)dt + |Xa(t f )|, (53)

with {Xa(t), t  t0} defined by

dXa(t) = aXa(t)dt +dB(t). (54)

Since the aim is to bring the controlled process as close as possible to zero at time
t f , we can assume that the optimal constant a is negative. Let b := −a. The process
{Xb(t), t  t0} that satisfies the stochastic differential equation

dXb(t) =−bXb(t)dt +dB(t) (55)

is an Ornstein-Uhlenbeck process, which is a time-homogeneous Gaussian process. We
can write (see Cox and Miller (1965), for instance) that, conditional on Xb(t0) = x,

Xb(t)∼ N

(
xe−b(t f−t0),

1− e−2b(t f−t0)

2b

)
. (56)

It follows (with ∆t = t f − t0, as above) that

E[X2
b (t)] =

1− e−2b∆t

2b
+
(

xe−b∆t
)2

. (57)

Hence, the expected cost when we choose u[X(t), t] = ub[X(t), t] :=−bXb(t) is given by

E[Jb(x, t0)] =

t f∫
t0

1
2

b2 E[X2
b (t)]dt +E[|Xb(t f )|]

=
b∆t

4
− 1

4

(
1
2
−bx2

) (
1− e−2b∆t

)
+E[|Xb(t f )|], (58)

where

E[|Xb(t)|] = −xe−b∆t +

√
1− e−2b∆t

bπ
exp
{
−bx2 e−2b∆t

1− e−2b∆t

}
+2xe−b∆t Φ

(√
2bx

e−b∆t
√

1− e−2b∆t

)
. (59)

To obtain the optimal constant b∗, we must therefore differentiate the expected cost
with respect to b and use a mathematical software to find the value of b for which the
derivative is equal to zero (and check that this value corresponds indeed to a minimum,
which clearly should be the case). Once b∗ has been evaluated (approximately), we can
compute the minimum expected cost. We will illustrate the procedure with a numerical
example in the next subsection.
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3.1. A numerical application

We will compute the various optimal and suboptimal controls derived in the previous
sections, as well as the corresponding expected costs, in two particular instances. We set
t0 = 0 and t f = 1, so that ∆t = 1, and we first assume that the controlled process starts at
x = 1.
I) In the first example considered in Section 2, if the optimizer uses no control at all, then
the expected cost is given by (see Eq. (39)) E[J0(1,0)] = 2. Moreover, the best constant
control c∗ is (see Eq. (48)) = −2/3, and the corresponding expected cost (see Eq. (49)) is
equal to 5/3. Finally, we deduce from (31) and (30), respectively, that the optimal control
is u∗(1,0) =−2x/3 and the value function is

F(1,0) =
1
2

ln(3)+
1
3
≃ 0,88.

We can conclude that, for this numerical example, the optimizer should use some control.
Furthermore, the optimal solution is much better than the best constant control.

If we replace the final time t f = 1 by t f = 10, we obtain the following results:
E[J0(1,0)] = 11, c∗ = −2/21, E[Jc∗(1,0)] ≃ 10,05, u∗(1,0) = −2x/21 and F(1,0) ≃
1,57. We see that for t f large, there is a huge difference between the expected cost ob-
tained with the best constant control and the value function.
II) When K[Xc(t f )] = |Xc(t f )|, if t0 = 0, t f = 1 and x = 1, we find (see Eq. (41)) that

E[J0(1,0)] = E [|X0(1)|] =−1+
√

2/πe−1/2 +2Φ(1)≃ 1,17.

The best constant c∗ satisfies Eq. (52), which becomes

c∗−1+2Φ(1+ c∗) = 0.

We find that c∗ ≃ 0,43. Making use of this value, we deduce from Eq. (46) that
E[Jc∗(1,0)]≃ 1,02.

Next, with the help of a mathematical software, we obtain that b∗ ≃ 0,56. Hence, we
compute (see (58) and (59)) that E[Jb∗(1,0)]≃ 0,93.

Finally, we find that the value function F(1,0) is approximately equal to 0,90. There-
fore, here there is less difference between the optimal and suboptimal solutions, com-
pared with the first example presented above.

As in the previous particular case, we replace t f = 1 by t f = 10 to see whether the
suboptimal solutions are still close to the optimal one when t f is large. We find that
E[J0(1,0)] ≃ 2,65, c∗ ≃−0,072, E[Jc∗(1,0)] ≃ 2,56, b∗ ≃ 0,63, E[Jb∗(1,0)] ≃ 2,31 and
F(1,0)≃ 1,50. Although the suboptimal expected costs are closer to the value function
than in the first example with t f = 10, it is clear that the optimal control u∗(1,0) is really
superior to the suboptimal controls.
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4. Conclusion

In this paper, the problem of optimally controlling a standard Brownian motion until
a fixed time t f when the termination cost function K is an even function has been con-
sidered. In Section 2, we saw that if we are able to invert the Fourier transform L(w, t0)
defined in (17), then we obtain explicit expressions for the optimal control and the value
function.

The Fourier transform L depends on the choice of the termination cost function
K. In Section 2, we presented the exact solution to our optimal control problem when
K[X(t f )] = X2(t f ) and when K[X(t f )] = |X(t f )|. As expected, u∗(x, t0) is linear in x in
the first case. However, the optimal solution was not obvious at all when we replace the
square of the final position X(t f ) of the process by its absolute value.

In Section 3, we computed various suboptimal solutions to the problem set up in this
paper. The numerical examples presented at the end of this section showed that these
suboptimal solutions could not compete with the optimal one, at least for the numerical
values chosen for t0, t f and x. Nevertheless, in the case when we are unable to invert the
Fourier transform L(w, t0), the suboptimal solutions are worth considering, especially the
best linear control.

We could have considered a controlled Wiener process with drift µ and variance
parameter σ2 instead of a standard Brownian motion. It would be interesting to see the
effect of the variance parameter on the optimal solution. However, we could then no
longer use symmetry to assert that F(−x, t0) = F(x, t0).

Finally, we could try to extend the results presented in this paper by replacing the
deterministic final time t f by a random variable T that is independent of the controlled
process {X(t), t  t0}. We could also consider the case when the infinitesimal parameters
of the controlled process are not both constants, but at least one is rather a function of
X(t) and/or t. For instance, we could assume that {X(t), t  t0} is an Ornstein-Uhlenbeck
process, whose infinitesimal mean is given by −βx for a positive constant β.
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