Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: Antifungals compounds have gained significant attention, and in this context, fluconazole as an antifungal is used predominantly, and the use of a nanoformulated form of this is discussed. Design/methodology/approach: Fluconazole, an FDA-approved antibiotic, is an effective antimicrobial especially used to treat fungal infections. Its uniqueness lies in the fact that it contains fluoride with triazole functionality. Its efficacy against various types of fungus is demonstrated. Findings: Although it is one of the effective antibiotics, its side effects are well documented, and due to this, many techniques are tried to improve its efficacy with lesser side effects. Research limitations/implications: In this respect, nanoparticles play a crucial role, and many studies worldwide are carried out on this aspect. Among many nano techniques use of chitosan as well as lipid carriers of fluconazole are being considered. However, systematic studies are warranted to take this aspect into clinical trials. Practical implications: Nano-based platforms seem to be an alternating hope to combat resistance and side effect. Originality/value: A thorough study is the need of the hour to devise a proper nano-based strategy of fluconazole.
Wydawca
Rocznik
Tom
Strony
81--85
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, 603103, India
Bibliografia
- [1] L. Ostrosky-Zeichner, J.H. Rex, Chapter 53 - Antifungal and Antiviral Therapy, in: J.E. Parrillo, R.P. Dellinger (eds), Critical Care Medicine (Third Edition), Mosby, Philadelphia, 2008, 1089-1109. DOI: https://doi.org/10.1016/B978-032304841-5.50055-8
- [2] A.M.S. Alsaad, Y.C. Kaplan, G. Koren, Exposure to fluconazole and risk of congenital malformations in the offspring: A systematic review and meta-analysis, Reproductive Toxicology 52 (2015) 78-82. DOI: https://doi.org/10.1016/j.reprotox.2015.02.009
- [3] J.H. van Burik, W. Leisenring, D. Myerson, R.C. Hackman, H.M. Shulman, G.E. Sale, R.A. Bowden, G.B. McDonald, The effect of prophylactic fluconazole on the clinical spectrum of fungal diseases in bone marrow transplant recipients with special attention to hepatic candidiasis. An autopsy study of 355 patients, Medicine 77/4 (1998) 246-254. DOI: https://doi.org/10.1097/00005792-199807000-00003
- [4] C.A. Kauffman, P.G. Pappas, D.S. McKinsey, R.A. Greenfield, J.R. Perfect, G.A. Cloud, C.J. Thomas, W.E. Dismukes, Allergy NIo, Group IDMS, Treatment of Lymphocutaneous and Visceral Sporotrichosis with Fluconazole, Clinical Infectious Diseases 22/1 (1996) 46-50. DOI: https://doi.org/10.1093/clinids/22.1.46
- [5] B.T. Fisher, T. Zaoutis, C.C. Dvorak, M. Nieder, D. Zerr, J.R. Wingard, C. Callahan, D. Villaluna, L. Chen, H. Dang, A.J. Esbenshade, S. Alexander, J.M. Wiley, L. Sung, Effect of Caspofungin vs Fluconazole Prophylaxis on Invasive Fungal Disease Among Children and Young Adults With Acute Myeloid Leukemia: A Randomized Clinical Trial, Journal of the American Medical Association 322/17 (2019) 1673-1681. DOI: https://doi.org/10.1001/jama.2019.15702
- [6] H.L. Paladine, U.A. Desai, Vaginitis: Diagnosis and Treatment, American Family Physician 97/5 (2018) 321-329.
- [7] A.K. Gupta, N. Stec, R.C. Summerbell, N.H. Shear, V. Piguet, A. Tosti, B.M. Piraccini, Onychomycosis: a review, Journal of the European Academy of Dermatology and Venereology 34/9 (2020) 1972-1990. DOI: https://doi.org/10.1111/jdv.16394
- [8] S. Xie, L. Ye, X. Ye, G. Lin, R.A. Xu, Inhibitory effects of voriconazole, itraconazole and fluconazole on the pharmacokinetic profiles of ivosidenib in rats by UHPLC-MS/MS, Journal of Pharmaceutical and Biomedical Analysis 187 (2020) 113353. DOI: https://doi.org/10.1016/j.jpba.2020.113353
- [9] O.E. Abbasoğlu, B.M. Hoşal, B. Sener, N. Erdemoğlu, E. Gürsel, Penetration of topical fluconazole into human aqueous humor, Experimental Eye Research 72/2 (2001) 147-151. DOI: https://doi.org/10.1006/exer.2000.0936
- [10] L.B. Denardi, D.A.N. Mario, É.S. Loreto, J.M. Santurio, S.H. Alves, Synergistic effects of tacrolimus and azole antifungal compounds in fluconazole-susceptible and fluconazole-resistant Candida glabrata isolates, Brazilian Journal of Microbiology 46/1 (2015) 125-129. DOI: https://doi.org/10.1590/s1517-838246120120442
- [11] Z. Ma, X. Wang, C. Li, Strategies of Drug Delivery for Deep Fungal Infection: A Review, Pharmaceutical Nanotechnology 8/5 (2020) 372-390. DOI: https://doi.org/10.2174/2211738508666200910101923
- [12] S.F. Urbak, T. Degn, Fluconazole in the management of fungal ocular infections, Ophthalmologica 208/3 (1994) 147-156. DOI: https://doi.org/10.1159/000310473
- [13] S. Paul, P. Singh, S.A. Shankarnarayan, S.M. Rudramurthy, A. Chakrabarti, A.K. Ghosh, Rapid detection of fluconazole resistance in Candida tropicalis by MALDI-TOF MS, Medical Mycology 56/2 (2017) 234-241. DOI: https://doi.org/10.1093/mmy/myx042
- [14] E.W. Hunsaker, K.J. McAuliffe, K.J. Franz, Fluconazole analogues with metal-binding motifs impact metal-dependent processes and demonstrate antifungal activity in Candida albicans, JBIC Journal of Biological Inorganic Chemistry 25/5 (2020) 729-745. DOI: https://doi.org/10.1007/s00775-020-01796-x
- [15] C.R. da Silva, J.B. de Andrade Neto, J.J.C. Sidrim, M.R.F. Ângelo, H.I.F. Magalhães, B.C. Cavalcanti, R.S.N. Brilhante, D.S. Macedo, M.O. de Moraes, M.D.P. Lobo, T.B. Grangeiro, H.V. Nobre Júnior, Synergistic Effects of Amiodarone and Fluconazole on Candida tropicalis Resistant to Fluconazole, Antimicrobial Agents and Chemotherapy 57/4 (2013) 1691-1700. DOI: https://doi.org/10.1128/AAC.00966-12
- [16] K.D. Hunter, J. Gibson, P. Lockhart, A. Pithie, J. Bagg, Fluconazole-resistant Candida species in the oral flora of fluconazole-exposed HIV-positive patients, Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology 85/5 (1998) 558-564. DOI: https://doi.org/10.1016/s1079-2104(98)90291-8
- [17] A. Behtash, S. Nafisi, H.I. Maibach, New Generation of Fluconazole: A Review on Existing Researches and Technologies, Current Drug Delivery 14/1 (2017) 2-15. DOI: https://doi.org/10.2174/1567201813666160502125620
- [18] H.M. Alkhalidi, K.M. Hosny, W.Y. Rizg, Oral Gel Loaded by Fluconazole‒Sesame Oil Nanotransfersomes: Development, Optimization, and Assessment of Antifungal Activity, Pharmaceutics 13/1 (2021) 27. DOI: https://doi.org/10.3390/pharmaceutics13010027
- [19] S. Trombino, S. Mellace, R. Cassano, Solid lipid nano-particles for antifungal drugs delivery for topical applications, Therapeutic Delivery 7/9 (2016) 639-647. DOI: https://doi.org/10.4155/tde-2016-0040
- [20] G. Frommeyer, C. Fischer, P.S. Lange, P. Leitz, M. Fehr, H. Bogossian, P. Milberg, L. Eckardt, Divergent electrophysiologic profile of fluconazole and voriconazole in an experimental whole-heart model of proarrhythmia, European Journal of Pharmacology 776 (2016) 185-190. DOI: https://doi.org/10.1016/j.ejphar.2016.02.051
- [21] M. Nasr, M. Teiama, A. Ismail, A. Ebada, S. Saber, In vitro and in vivo evaluation of cubosomal nanoparticles as an ocular delivery system for fluconazole in treatment of keratomycosis, Drug Delivery and Translational Research 10/6 (2020) 1841-1852. DOI: https://doi.org/10.1007/s13346-020-00830-4
- [22] H.A. El Rabey, F.M. Almutairi, A.I. Alalawy, M.A. Al-Duais, M.I. Sakran, N.S. Zidan, A.A. Tayel, Augmented control of drug-resistant Candida spp. via fluconazole loading into fungal chitosan nanoparticles, International Journal of Biological Macromolecules 141 (2019) 511-516. DOI: https://doi.org/10.1016/j.ijbiomac.2019.09.036
- [23] M. Gupta, S.P. Vyas, Development, characterization and in vivo assessment of effective lipidic nanoparticles for dermal delivery of fluconazole against cutaneous candidiasis, Chemistry and Physics of Lipids 165/4 (2012) 454-461. DOI: https://doi.org/10.1016/j.chemphyslip.2012.01.006
- [24] D. Takalkar, N. Desai, Nanolipid Gel of an antimycotic drug for treating vulvovaginal Candidiasis - development and evaluation, AAPS PharmSciTech 19/3 (2018) 1297-1307. DOI: https://doi.org/10.1208/s12249-017-0918-7
- [25] M. Domingues Bianchin, S.M. Borowicz, G. da Rosa Monte Machado, B. Pippi, S.S. Guterres, A.R. Pohlmann, A.M. Fuentefria, I.C. Külkamp-Guerreiro, Lipid core nanoparticles as a broad strategy to reverse fluconazole resistance in multiple Candida species, Colloids and Surfaces B: Biointerfaces 175 (2019) 523-529. DOI: https://doi.org/10.1016/j.colsurfb.2018.12.011
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16a83d16-1042-4de4-8e84-c7b4c84da90c