PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effect of Microalloying (Nb, V) and Interstitial (C, N) Elements on Mechanical Properties of Microalloyed Steels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The microalloying elements such as Nb, V are added to control the microstructure and mechanical properties of microalloyed (HSLA) steels. High chemical affinity of these elements for interstitials (N, C) results in precipitation of binary compound, nitrides and carbides and products of their mutual solubility – carbonitrides. The chemical composition of austenite, as well as the content and geometric parameters of undissolved precipitates inhibiting the growth of austenite grains is important for predicting the microstructure, and thus the mechanical properties of the material. Proper selection of the chemical composition of the steel makes it possible to achieve the required properties of the steel at the lowest possible manufacturing cost. The developed numerical model of carbonitrides precipitation process was used to simulate and predict the mechanical properties of HSLA steels. The effect of Nb and V content to change the yield strength of these steels was described. Some comparison with literature was done.
Rocznik
Strony
127--136
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
  • AGH University of Krakow, Poland
autor
  • AGH University of Krakow, Poland
  • AGH University of Krakow, Poland
Bibliografia
  • [1] Adrian H. (2011). Numerical modeling of heat treatment processes. AGH Kraków. (in Polish).
  • [2] European Committee for Standardization (2019). Hot Rolled Products of Structural Steels: Technical Delivery Conditions for Flat Products of High Yield Strength Structural Steels in the Quenched and Tempered Condition
  • [3] Jan, F., Jaka, B. & Grega, K. (2021). Grain size evolution and mechanical properties of Nb, V-Nb, and Ti-Nb boron type S1100QL steels. Metals. 11(3), 492. https://doi.org/10.3390/met11030492.
  • [4] Gladman, T. (1997). The physical metallurgy of microalloyed steels institute of materials. vol. 363. London, UK. Search in.
  • [5] Blicharski, M. (2004). Materials engineering: steel. WNT: Warszawa. (in Polish).
  • [6] Marynowski, P., Adrian, H. & Głowacki, M. (2019) Modeling of the kinetics of carbonitride precipitation process in high-strength low-alloy steels using cellular automata method. Journal of Materials Engineering and Performance. 28(7), 4018-4025. https://doi.org/10.1007/s11665-019-04170-4.
  • [7] Marynowski, P., Adrian, H. & Głowacki, M. (2018). Cellular Automata model of carbonitrides precipitation process in steels. Computer Methods in Materials Science. 18(4), 120-128. ISSN 1641-8581.
  • [8] Marynowski, P., Adrian, H. & Głowacki, M. (2013). Cellular Automata model of precipitation in microalloyed niobium Computer Methods in Materials Science. 13(4), 452-459. ISSN 1641-8581.
  • [9] Adrian, H. (1992). Thermodynamic model for precipitation of carbonitrides in high strength low alloy steels containing up to three microalloying elements with or without additions of aluminum. Materials Science and Technology. 8, 406-420. https://doi.org/10.1179/mst.1992.8.5.406.
  • [10] Adrian, H. (1995). Thermodynamic model of carbonitride precipitation in low-alloy steels with increased strength with application to hardenability tests. Kraków: AGH. (in Polish).
  • [11] Adrian, H. (1995). Thermodynamic calculations of carbonitride precipitation as a guide for alloy design of microalloyed steels. In Proceedings of the International Conference Microalloying'95, 11-14 June 1995(285-307). Pittsburgh.
  • [12] Adrian, H. (1999). A mechanism for the effect of vanadium on the hardenability of medium carbon manganese steel. Materials Science and Technology. 15, 366-378. https://doi.org/10.1179/026708399101505987.
  • [13] Cuddy, L.J. & Raley, J.C. (1987). Austenite grain coarsening in microalloyed steels. Metallurgical Transactions A. 14, 1989-1995. https://doi.org/10.1007/BF02662366.
  • [14] Cuddy, L.J. (1984). The effect of micro alloy concentration on the recrystallization of austenite during hot deformation. Processing of Microalloyed Austenite (Pittsburgh) TMS-AIME Warrendale PA.
  • [15] Goldschmidt, H.J. (1967). Interstitial Alloys. Butterworth-Heinermann.
  • [16] Lifschitz, I.M. & Slyozov, V.V. (1961). The kinetics of precipitation from supersaturated solid solution. Journal of Physics and Chemistry of Solids. 19(1/2), 35-50. https://doi.org/10.1016/0022-3697(61)90054-3.
  • [17] Zając, S., Siwecki, T. & Hutchinson, W.B. (1998). Lagneborg R. The role of carbon in enhancing precipitation strengthening of V-microalloyed steels. Material Science Forum. 284, 295-302. https://doi.org/10.4028/www.scientific.net/MSF.284-286.295.
  • [18] Langberg, R., Hutchinson, W.B., Siwecki, T. & Zając, T. (2014). The role of vanadium in microalloyed steels. Sweden: Swerea KIMAB.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16a70898-7493-4add-919e-ad4ea04f55cc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.