PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

General and regional cross station assessment of machine learning models for estimating reference evapotranspiration

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Significant research has been done on estimating reference evapotranspiration (ET0) from limited climatic measurements using machine learning (ML) to facilitate the acquirement of ET0 values in areas with limited access to weather stations. However, the spatial generalizability of ET0 estimating ML models is still questionable, especially in regions with significant climatic variation like Turkey. Aiming at exploring this generalizability, this study compares two ET0 modeling approaches: (1) one general model covering all of Turkey, (2) seven regional models, one model for each of Turkey’s seven regions. In both approaches, ET0 was predicted using 16 input combinations and 3 ML methods: support vector regression (SVR), Gaussian process regression (GPR), and random forest (RF). A cross-station evaluation was used to evaluate the models. Results showed that the use of regional models created using SVR and GPR methods resulted in a reduction in root mean squared error (RMSE) in comparison with the general model approach. Models created using the RF method suffered from overfitting in the regional models’ approach. Furthermore, a randomization test showed that the reduction in RMSE when using these regional models was statistically significant. These results emphasize the importance of defining the spatial extent of ET0 estimating models to maintain their generalizability.
Czasopismo
Rocznik
Strony
927--947
Opis fizyczny
Bibliogr. 69 poz.
Twórcy
  • Department of Civil Engineering, Erciyes University, Kayseri, Turkey
  • Department of Civil Engineering, Erciyes University, Kayseri, Turkey
Bibliografia
  • 1. Abdullah SS, Abdul Malek M (2016) Empirical Penman-Monteith equation and artificial intelligence techniques in predicting reference evapotranspiration : a review. Int J Water 10(1):55–66
  • 2. Aliabad FA, Hakimzadeh MA, Shojaei S (2019) The impact of drought and decline in groundwater levels on the spread of sand dunes in the plain in Iran. Sustain Water Resour Manag 5(2):541–555. https://doi.org/10.1007/s40899-017-0204-6
  • 3. Alizamir M, Kisi O, Muhammad Adnan R, Kuriqi A (2020) Modelling reference evapotranspiration by combining neuro-fuzzy and evolutionary strategies. Acta Geophys 68(4):1113–1126. https://doi.org/10.1007/s11600-020-00446-9
  • 4. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56. FAO, Rome 300(9):D05109
  • 5. Arslan O (2020) Changes in crop and irrigation water requirements in Niğde. Int Sci Vocat Stud J 4(1):68–74
  • 6. Awad M, Khanna R (2015) Support vector regression. Efficient learning machines. Apress, Berkeley, CA, pp 67–80
  • 7. Başakın EE, Ekmekcİoğlu Ö, Özger M, Altınbaş N, Şaylan L (2021a) Estimation of measured evapotranspiration using data-driven methods with limited meteorological variables. Ital J Agrometeorol 1:63–80. https://doi.org/10.36253/ijam-1055
  • 8. Başakın EE, Ekmekcioğlu Ö, Çıtakoğlu H, Özger M (2021b) A new insight to the wind speed forecasting: robust multi-stage ensemble soft computing approach based on pre-processing uncertainty assessment. Neural Comput Appl. https://doi.org/10.1007/s00521-021-06424-6
  • 9. Breiman L (2001) Random forests. Mach Learn 45(1):5–32
  • 10. Chia MY, Huang YF, Koo CH, Fung KF (2020) Recent advances in evapotranspiration estimation using artificial intelligence approaches with a focus on hybridization techniques — a review. Argonomy 10(1):101
  • 11. Citakoglu H, Demir V (2022) Developing numerical equality to regional intensity – duration – frequency curves using evolutionary algorithms and multi - gene genetic programming. Acta Geophys. https://doi.org/10.1007/s11600-022-00883-8
  • 12. Citakoglu H, Cobaner M, Haktanir T, Kisi O (2014) Estimation of monthly mean reference evapotranspiration in Turkey. Water Resour Manag 28(1):99–113
  • 13. Cobaner M, Citakoglu H, Haktanir T, Kisi O (2017) Modifying Hargreaves-Samani equation with meteorological variables for estimation of reference evapotranspiration in Turkey. Hydrol Res 48(2):480–497. https://doi.org/10.2166/nh.2016.217
  • 14. Cutler A, Cutler DR, Stevens JR (2012) Random forests. Ensemble machine learning. Springer, Boston, MA, pp 157–175
  • 15. Demir V (2022) Enhancing monthly lake levels forecasting using heuristic regression techniques with periodicity data component : application of Lake Michigan. Theoret Appl Climatol 148(3):915–929. https://doi.org/10.1007/s00704-022-03982-0
  • 16. Deniz A, Toros H, Incecik S (2011) Spatial variations of climate indices in Turkey. Int J Climatol 31(3):394–403. https://doi.org/10.1002/joc.2081
  • 17. Droogers P, Allen RG (2002) Estimating reference evapotranspiration under inaccurate data conditions. Irrig Drain Syst 16(1):33–45
  • 18. Drucker H, Burges CJC, Kaufman L, Smola A, Vapnik V (1996) Support vector regression machines. Adv Neural Inf Process Syst 9:155–161
  • 19. Erinç S (1984) Climatology and its methods. Marine Science, Institute of Geography, Istanbul University Press, Istanbul, Turkey (in Turkish)
  • 20. Fan J, Ma X, Wu L, Zhang F, Yu X, Zeng W (2019) Light gradient boosting machine : an efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data. Agric Water Manag 225:105758. https://doi.org/10.1016/j.agwat.2019.105758
  • 21. Ferreira LB, da Cunha FF, de Oliveira RA, Fernandes Filho EI (2019) Estimation of reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM – a new approach. J Hydrol 572:556–570. https://doi.org/10.1016/j.jhydrol.2019.03.028
  • 22. Ferreira LB, Cunha FFDA, Silva GHDA, Campos FB, Dias SHB, Santos JEO (2021) Generalizability of machine learning models and empirical equations for the estimation of reference evapotranspiration from temperature in a semiarid region. An Acad Bras Ciênc. https://doi.org/10.1590/0001-3765202120200304
  • 23. Gholami V, Booij MJ (2022) Use of machine learning and geographical information system to predict nitrate concentration in an unconfined aquifer in Iran. J Clean Prod. https://doi.org/10.1016/j.jclepro.2022.131847
  • 24. Gholami V, Khaleghi MR, Pirasteh S, Booij MJ (2022) Comparison of self - organizing map, artificial neural network, and co - active neuro - fuzzy inference system methods in simulating groundwater quality : geospatial artificial intelligence. Water Resour Manag 36(2):451–469. https://doi.org/10.1007/s11269-021-02969-2
  • 25. Görkemli B, Citakoglu H, Haktanir T, Karaboga D (2022) A new method based on artificial bee colony programming for the regional standardized intensity–duration-frequency relationship. Arabian J Geosci. https://doi.org/10.1007/s12517-021-09377-1
  • 26. Granata F (2019) Evapotranspiration evaluation models based on machine learning algorithms—a comparative study. Agric Water Manag 217:303–315. https://doi.org/10.1016/j.agwat.2019.03.015
  • 27. Guo D, Westra S, Maier HR (2016) An R package for modelling actual, potential and reference evapotranspiration. Environ Model Softw 78:216–224. https://doi.org/10.1016/j.envsoft.2015.12.019
  • 28. Hameed MM, Alomar MK, Mohd Razali SF, Kareem Khalaf MA, Baniya WJ, Sharafati A, Alsaadi MA (2021) Application of artificial intelligence models for evapotranspiration prediction along the Southern Coast of Turkey. Complexity. https://doi.org/10.1155/2021/8850243
  • 29. Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1(2):96–99
  • 30. Hensman J, Fusi N, and Lawrence ND (2013) Gaussian processes for big data. ArXiv Preprint arXiv:1309.6835
  • 31. Hoogeveen J, Faurès J, Peiser L, Burke J, Van De Giesen N (2015) GlobWat – a global water balance model to assess water use in irrigated agriculture. Hydrol Earth Syst Sci 19(9):3829–3844. https://doi.org/10.5194/hessd-12-801-2015
  • 32. Karimi S, Kisi O, Kim S, Nazemi AH, Shiri J (2017) Modelling daily reference evapotranspiration in humid locations of South Korea using local and cross-station data management scenarios. Int J Climatol 37(7):3238–3246. https://doi.org/10.1002/joc.4911
  • 33. Kazemi MH, Majnooni-Heris A, Kisi O, Shiri J (2021) Generalized gene expression programming models for estimating reference evapotranspiration through cross-station assessment and exogenous data supply. Environ Sci Pollut Res 28(6):6520–6532. https://doi.org/10.1007/s11356-020-10916-8
  • 34. Khayer K, Roshandel-kahoo A, Soleimani-monfared M, Kavoosi K (2022) Combination of seismic attributes using graph-based methods to identify the salt dome boundary. J Petrol Sci Eng 215:110625. https://doi.org/10.1016/j.petrol.2022.110625
  • 35. Kiafar H, Babazadeh H, Marti P, Kisi O, Landeras G (2017) Evaluating the generalizability of GEP models for estimating reference evapotranspiration in distant humid and arid locations. Theoret Appl Climatol 130(1):377–389. https://doi.org/10.1007/s00704-016-1888-5
  • 36. Kisi O, Cengiz TM (2013) Fuzzy genetic approach for estimating reference evapotranspiration of Turkey: Mediterranean region. Water Resour Manag 27(10):3541–3553. https://doi.org/10.1007/s11269-013-0363-7
  • 37. Kisi O, Demir V (2014) Evapotranspiration modeling using six different multi-layer perceptron algorithms. Hydraul Hydrol Eng 115–123
  • 38. Kisi O, Keshtegar B, Zounemat-Kermani M, Heddam S, Trung NT (2021) Modeling reference evapotranspiration using a novel regression-based method: radial basis M5 model tree. Theoret Appl Climatol 145(1–2):639–659. https://doi.org/10.1007/s00704-021-03645-6
  • 39. Krishnashetty PH, Balasangameshwara J, Sreeman S, Desai S, Kantharaju AB (2021) Cognitive computing models for estimation of reference evapotranspiration : a review. Cogn Syst Res 70:109–116. https://doi.org/10.1016/j.cogsys.2021.07.012
  • 40. Krueger C, Bini S, Helm JM, Swiergosz AM, Haeberle HS, Karnuta JM, Schaffer JL, Krebs VE, Spitzer AI, Ramkumar PN (2020) Machine learning and artificial intelligence: definitions, applications, and future directions. Curr Rev Musculoskelet Med 13(1):69–76
  • 41. Landeras G, Bekoe E, Ampofo J, Logah F, Diop M, Cisse M, Shiri J (2018) New alternatives for reference evapotranspiration estimation in West Africa using limited weather data and ancillary data supply strategies. Theoret Appl Climatol 132(3):701–716. https://doi.org/10.1007/s00704-017-2120-y
  • 42. Lilienfeld A, Asmild M (2007) Estimation of excess water use in irrigated agriculture : a data envelopment analysis approach. Agric Water Manag 94(1–3):73–82. https://doi.org/10.1016/j.agwat.2007.08.005
  • 43. Lin J (2016) On the dirichlet distribution. Queens University Department of Mathematics and Statistics
  • 44. Marti P, Gonzalez-Altozano P, Gasque M (2011) Reference evapotranspiration estimation without local climatic data. Irrig Sci 29(6):479–495. https://doi.org/10.1007/s00271-010-0243-3
  • 45. Mohammadi B, Mehdizadeh S (2020) Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm. Agric Water Manag 237:106145. https://doi.org/10.1016/j.agwat.2020.106145
  • 46. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10(3):282–290
  • 47. Nicolás-Cuevas JA, Parras-Burgos D, Soler-Méndez M, Ruiz-Canales A, Molina-Martínez JM (2020) Removable weighing lysimeter for use in horticultural crops. Appl Sci 10(14):4865. https://doi.org/10.3390/app10144865
  • 48. Nourani V, Elkiran G, Abdullahi J (2019) Multi-station artificial intelligence based ensemble modeling of reference evapotranspiration using pan evaporation measurements. J Hydrol 577:123958. https://doi.org/10.1016/j.jhydrol.2019.123958
  • 49. Oguzturk G, Yildiz O, Duvan A (2016) A drought analysis of sivas using the standardized precipitation index (SPI) method and drought estimation with the artificial neural networks. Int J Adv Mech Civ Eng 2(5):24–30
  • 50. Park PJ, Manjourides J, Bonetti M, Pagano M (2009) A permutation test for determining significance of clusters with applications to spatial and gene expression data. Comput Stat Data Anal 53(12):4290–4300. https://doi.org/10.1016/j.csda.2009.05.031
  • 51. Piri I, Khanamani A, Shojaei S, Fathizad H (2017) Determination of the best geostatistical method for climatic zoning in Iran. Appl Ecol Environ Res 15(1):93–103
  • 52. Ranstam J (2016) Multiple p values and Bonferroni correction. Osteoarthr Cartil 24(5):763–764. https://doi.org/10.1016/j.joca.2016.01.008
  • 53. Reis MM, da Silva AJ, Zullo Junior J, Tuffi Santos LD, Azevedo AM, Lopes ÉMG (2019) Empirical and learning machine approaches to estimating reference evapotranspiration based on temperature data. Comput Electron Agric 165:104937. https://doi.org/10.1016/j.compag.2019.104937
  • 54. Sahin S, Cigizoglu HK (2012) The sub-climate regions and the sub-precipitation regime regions in Turkey. J Hydrol 450:180–189. https://doi.org/10.1016/j.jhydrol.2012.04.062
  • 55. Sahour H, Gholami V, Torkaman J, Vazifedan M, Saeedi S (2021) Random forest and extreme gradient boosting algorithms for streamflow modeling using vessel features and tree - rings. Environ Earth Sci 80(22):1–14. https://doi.org/10.1007/s12665-021-10054-5
  • 56. Sanikhani H, Kisi O, Maroufpoor E, Yaseen ZM (2019) Temperature-based modeling of reference evapotranspiration using several artificial intelligence models : application of different modeling scenarios. Theoret Appl Climatol 135(1):449–462
  • 57. Sattari MT, Apaydin H, Band SS, Mosavi A, Prasad R (2021) Comparative analysis of kernel-based versus ANN and deep learning methods in monthly reference evapotranspiration estimation. Hydrol Earth Syst Sci 25(2):603–618. https://doi.org/10.5194/hess-25-603-2021
  • 58. Schulz E, Speekenbrink M, Krause A (2018) A tutorial on Gaussian process regression: modelling, exploring, and exploiting functions. J Math Psychol 85:1–16. https://doi.org/10.1016/j.jmp.2018.03.001
  • 59. Shabani S, Samadianfard S, Sattari MT, Mosavi A, Shamshirband S, Kmet T, Várkonyi-Kóczy AR (2020) Modeling pan evaporation using gaussian process regression k-nearest neighbors random forest and support vector machines; comparative analysis. Atmosphere 11(1):66. https://doi.org/10.3390/ATMOS11010066
  • 60. Shahbazi A, Monfared MS, Thiruchelvam V, Fei TK, Babasafari AA (2020) Integration of knowledge-based seismic inversion and sedimentological investigations for heterogeneous reservoir. J Asian Earth Sci 202:104541. https://doi.org/10.1016/j.jseaes.2020.104541
  • 61. Shiri J, Nazemi AH, Sadraddini AA, Landeras G, Kisi O, Fard AF, Marti P (2014) Comparison of heuristic and empirical approaches for estimating reference evapotranspiration from limited inputs in Iran. Comput Electron Agric 108:230–241. https://doi.org/10.1016/j.compag.2014.08.007
  • 62. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res: Atmos 106(D7):7183–7192
  • 63. Williams CKI, Rasmussen CE (1995) Gaussian processes for regression. Adv Neural Inf Process Syst. https://doi.org/10.1016/0165-4896(94)90008-6
  • 64. Wu L, Peng Y, Fan J, Wang Y (2019) Machine learning models for the estimation of monthly mean daily reference evapotranspiration based on cross- station and synthetic data. Hydrol Res 50(6):1730–1750. https://doi.org/10.2166/nh.2019.060
  • 65. Xu CY, Singh VP (2002) Cross comparison of empirical equations for calculating potential evapotranspiration with data from Switzerland. Water Resour Manag 16(3):197–219. https://doi.org/10.1023/A:1020282515975
  • 66. Yan S, Wu L, Fan J, Zhang F, Zou Y, Wu Y (2021) A novel hybrid WOA-XGB model for estimating daily reference evapotranspiration using local and external meteorological data : applications in arid and humid regions of China. Agric Water Manag 244:106594. https://doi.org/10.1016/j.agwat.2020.106594
  • 67. Yildirim T, Wagle P, Gowda PH, Mengu GP (2021) Sensitivity of reference evapotranspiration to weather variables across seven regions of Turkey. Agrosystems, Geosci Environ 4(2):1–10. https://doi.org/10.1002/agg2.20155
  • 68. Yurtseven I, Serengil Y (2021) Comparison of different empirical methods and data-driven models for estimating reference evapotranspiration in semi-arid Central Anatolian region of Turkey. Arab J Geosci 14(19):1–28. https://doi.org/10.1007/s12517-021-08150-8
  • 69. Zhang X, Ren Y, Yin ZY, Lin Z, Zheng D (2009) Spatial and temporal variation patterns of reference evapotranspiration across the Qinghai-Tibetan Plateau during 1971–2004. J Geophys Res Atmos. https://doi.org/10.1029/2009JD011753
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16a62097-947d-4b5e-b749-5e69cd5e677e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.