PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Visualization of pathologic changes in liver tissue via polarized light

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, we applied two polarized light based approaches to visualize histological patterns of liver pathologies. The first one involves acquisition of two images through a polarizing microscope, one image (Ppar) acquired with the analyzer oriented parallel to the polarization of illumination and the other (Pper) acquired with the analyzer oriented perpendicular to the illumination. The final image is based on the polarization ratio, Preconstructed = (Ppar – Pper)/(Ppar + Pper). Using the second technique, the histological specimens were illuminated with a polarized laser beam with wavelength of 635 nm. Polarimetric parameters as azimuth, angle of ellipticity, degree of polarization and reflected power have been measured to quantify the change in the polarization state of the incident light after interaction with the sample of the healthy tissue and of the tissue with abnormal morphological changes.
Czasopismo
Rocznik
Strony
395--404
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
  • Institute of Optical Materials and Technologies – Bulgarian Academy of Sciences, Acad. Georgi Bonchev Bl.109, 1113 Sofia, Bulgaria
  • University of Chemical Technology and Metallurgy, Department of Physics, 8 Kl. Ohridski Blvd., 1756 Sofia, Bulgaria
  • Institute of Optical Materials and Technologies – Bulgarian Academy of Sciences, Acad. Georgi Bonchev Bl.109, 1113 Sofia, Bulgaria
  • Institute of Optical Materials and Technologies – Bulgarian Academy of Sciences, Acad. Georgi Bonchev Bl.109, 1113 Sofia, Bulgaria
  • Institute of Optical Materials and Technologies – Bulgarian Academy of Sciences, Acad. Georgi Bonchev Bl.109, 1113 Sofia, Bulgaria
  • Institute of Optical Materials and Technologies – Bulgarian Academy of Sciences, Acad. Georgi Bonchev Bl.109, 1113 Sofia, Bulgaria
  • Institute of Optical Materials and Technologies – Bulgarian Academy of Sciences, Acad. Georgi Bonchev Bl.109, 1113 Sofia, Bulgaria
  • University of Telecommunications and Post, 1 Acad. St. Mladenov Str., 1700 Sofia, Bulgaria
  • Scientific and Technological Center of Unique Instrumentation – Russian Academy of Sciences, 15 Butlerova, 117342 Moscow, Russia
Bibliografia
  • [1] PANQUEVA R., Useful algorithms for histopathological diagnosis of liver disease based on patterns of liver damage, Revista Colombiana de Gastroenterología 31(4), 2016, pp. 436–449.
  • [2] ČERNÝ V., TUREK Z., PAŘÍZKOVÁ R., Orthogonal polarization spectral imaging, Physiological Research 56(2), 2007, pp. 141–147, DOI: 10.33549/physiolres.930922.
  • [3] JACQUES S., LEE K., Polarized video imaging of skin, lasers in surgery: advanced characterization, Proc. SPIE 3245, Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VIII, 1998, pp. 356–362, DOI: 10.1117/12.312307.
  • [4] JACQUES S., RAMELLA-ROMAN J., KENNETH LEE M.D., Imaging skin pathology with polarized light, Journal of Biomedical Optics 7(3), 2002, pp. 329–340, DOI: 10.1117/1.1484498.
  • [5] WILSON R.A., ZAVISLAN J.M., SCHIFFHAUER L.M., Optical segmentation of unprocessed breast tissue for margin assessment, The Breast 23(4), 2014, pp. 413–422, DOI: 10.1016/j.breast.2014.02.014.
  • [6] STOILOVA A., NAZAROVA D., BLAGOEVA B., STRIJKOVA V., PETKOV P., Polarized Light for Detection of Pathological Changes Within Biological Tissues, 1st Edition, Nanoscience and Nanotechnology in Security and Protection against CBRN Threats, Springer Dordrecht, 2020, pp. 477–483.
  • [7] NGUYEN T., BUI C., HIEN P., Characterization of Liver Cancer Tissues Utilizing the Optical Polarized System, 1st Edition, Proceeding of the 7th International Conference on the Development of Biomedical Engineering, June 27–29 Vietnam, 2018, Springer, pp. 407–412.
  • [8] ANTONELLI M., PIERANGELO A., NOVIKOVA T., VALIDIRE P., BENALI A., GAYET B., DE MARTINO A., Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data, Optics Express 18(10), 2010, pp. 10200–10208, DOI: 10.1364/OE.18.010200.
  • [9] PIERANGELO A., MANHAS S., BENALI A., ANTONELLI M., NOVIKOVA T., VALIDIRE P., GAYET B., DE MARTINO A., Use of Mueller polarimetric imaging for the staging of human colon cancer, Proc. SPIE 7895, Optical Biopsy IX, 2011, article ID 78950E, DOI: 10.1117/12.878248.
  • [10] USHENKO V., DUBOLAZOV A., SAVICH V., NOVAKOVSKAYA O., OLAR O., MARCHUK Y., The structure of polarization maps of skin histological sections in the Fourier domain for the tasks of benign and malignant formations differentiation, Proceeding of the VII Conference on Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies, 21–24 August 2014, Romania, 9258, article ID 92580L.
  • [11] LIU T., SUN T., HE H., LIU, S. DONG Y., WU J., MA H., Comparative study of the imaging contrasts of Mueller matrix derived parameters between transmission and backscattering polarimetry, Biomedical Optics Express 9(9), 2018, pp. 4413–4428, DOI: 10.1364/BOE.9.004413.
  • [12] BACKMAN V., WALLACE M.B., PERELMAN L.T., ARENDT J.T., GURJAR R., MÜLLER M.G., ZHANG Q., ZONIOS G., KLINE E., MCGILLICAN T., SHAPSHAY S., VALDEZ T., BADIZADEGAN K., CRAWFORD J.M., FITZMAURICE M., KABANI S., LEVIN H.S., SEILER M., DASARI R.R., ITZKAN I., DAM J.V., FELD M.S., Detection of preinvasive cancer cells, Nature 406, 2000, pp. 35–36, DOI: 10.1038/35017638.
  • [13] QI J., ELSON D.S., Mueller polarimetric imaging for surgical and diagnostic applications: a review, Journal of Biophotonics 10(8), 2017, pp. 950–982, DOI: 10.1002/jbio.201600152.
  • [14] WOOD M., GHOSH N., WALLENBURG M., LI S., WEISEL R., WILSON B., LI R., VITKIN I.A., Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues, Journal of Biomedical Optics 15(4), 2010, article ID 047009, DOI: 10.1117/1.3469844.
  • [15] CHANGOOR A., TRAN-KHANH N., MÉTHOT S., GARON M., HURTIG M.B., SHIVE M.S., BUSCHMANN M.D., A polarized light microscopy method for accurate and reliable grading of collagen organization in cartilage repair, Osteoarthritis and Cartilage 19(1), 2011, pp. 126–135, DOI: 10.1016/j.joca.2010.10.010.
  • [16] BOROVKOVA M., BYKOV A., POPOV A., PIERANGELO A., NOVIKOVA T., PAHNKE J., MEGLINSKI I., Evaluating β-amyloidosis progression in Alzheimer’s disease with Mueller polarimetry, Biomedical Optics Express 11(8), 2020, pp. 4509–4519, DOI: 10.1364/BOE.396294.
  • [17] BOROVKOVA M., TRIFONYUK L., USHENKO V., DUBOLAZOV O., VANCHULYAK O., BODNAR G., USHENKO Y., OLAR O., USHENKO O., SAKHNOVSKIY M., BYKOV A., MEGLINSKI I., Mueller-matrix-based polarization imaging and quantitative assessment of optically anisotropic polycrystalline networks, PLoS ONE 14(5), 2019, article ID e0214494, DOI: 10.1371/journal.pone.0214494.
  • [18] GHOSH N., VITKIN A., Tissue polarimetry: concepts, challenges, applications, and outlook, Journal of Biomedical Optics 16(11), 2011, article ID 110801, DOI: 10.1117/1.3652896.
  • [19] CHITI F., DOBSON C.M., Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade, Annual Review of Biochemistry 86, 2017, pp. 27–68, DOI: 10.1146/annurev-biochem-061516-045115.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16a2cc94-66f5-4669-8c8d-f9adf4256c28
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.