PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Online continuous-time adaptive predictive control of the technological glass conditioning process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Glass production has a great industrial importance and is associated with many technological challenges. Control related problems concern especially the last part of the process, so called glass conditioning. Molten glass is gradually cooled down in a long ceramic channels called forehearths during glass conditioning. The glass temperature in each zone of the forehearth should be precisely adjusted according to the assumed profile. Due to cross-couplings and unmeasured disturbances, traditional control systems based on PID controllers, often do not ensure sufficient control quality. This problem is the main motivation for the research presented in the paper. A Model Predictive Control algorithm is proposed for the analysed process. It is assumed the dynamic model for each zone of the forehearth is identified on-line with the Modulating Functions Method. These continuous-time linear models are subsequently used for two purposes: for the predictive controller tuning, measurable disturbances compensation and for a static set point optimisation. Proposed approach was tested using Partial Differential Equation model to simulate two adjacent zones of the forehearth. The experimental results proved that it can be successfully applied for the aforementioned model.
Rocznik
Strony
755--782
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wzory
Twórcy
  • Department of Automatic Control and Robotics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
  • Department of Automatic Control and Robotics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] Q. Wang, Q. Chalaye, G. Thomas, and G. Gilles: Predictive control of a glass process. Control Engineering Practice, 5(2), (1997), 167-173. DOI: 10.1016/S0967-0661(97)00223-2.
  • [2] B. Gough, J. Kay, and G. Dumont: Advanced model based control for continuous process industries. In: Proceedings of the 1997 American Control Conference (Cat. No. 97CH36041), (1997), 579-584. DOI: 10.1109/ACC.1997.611865.
  • [3] A. Kharitonov, S. Henkel, and O. Sawodny: Two degree of freedom control for a glass feeder. In: Proceedings of the European Control Conference, (2007), 4079-4086. DOI: 10.23919/ECC.2007.7068450.
  • [4] S. Henkel, A. Kharitonov, and O. Sawodny: Modelling and optimisation of a glass feeder considered as a distributed parameter system. SICE Annual Conference, (2007), 2950-2954. DOI: 10.1109/SICE.2007.4421496.
  • [5] E. Muysenberg, J. Chmelar, R. Bodi, and F. Matusik: Practical examples and advantages of advanced control applications by expert system ESII. In: A collection of papers presented at the 62nd Conference on Glass Problems, (2002), 3-19. DOI: 10.1002/9780470294727.ch1.
  • [6] E. Muysenberg, G. Neff, J. Muller, J. Chmelar, R. Bodi, and F. Matusik: An advanced control system to increase glass quality and glass production yields based on GS ESIII technology. In: A Collection of Papers Presented at the 66th Conference on Glass Problems, (2005), 33-45. DOI: 10.1002/9780470291306.ch3.
  • [7] W. Byrski, M. Drapała, and J. Byrski: An adaptive identification method based on the modulating functions technique and exact state observers for modeling and simulation of a nonlinear MISO glass melting process. International Journal of Applied Mathematics and Computer Science, 29(4), (2019), 739-757. DOI: 10.2478/amcs-2019-0055.
  • [8] W. Byrski, M. Drapała, and J. Byrski: New on-line algorithms for modelling, identification and simulation of dynamic systems using modulating functions and non-asymptotic state estimators: Case study for a chosen physical process. International Conference of Computer Science 2021, (2021), 284-297. DOI: 10.1007/978-3-030-77970-2_22.
  • [9] M. Drapała and W. Byrski: Continuous-time model predictive control with disturbances compensation for a glass forehearth. 25th International Conference on Methods and Models in Automation and Robotics (MMAR), (2021), 366-371. DOI: 10.1109/MMAR49549.2021.9528433.
  • [10] M. Shinbrot: On the analysis of linear and nonlinear systems. Transactions of the American Society of Mechanical Engineers: Journal of Basic Engineering, 79(3), (1957), 547-522. DOI: 10.1115/1.4013092.
  • [11] W. Byrski and S. Fuksa: Optimal identification of continuous systems in 𝐿2 space by the use of compact support filter. International Journal of Modelling and Simulation, 15(4), (1995), 125-131. DOI: 10.1080/02286203.1995.11760263.
  • [12] W. Byrski and J. Byrski: The role of parameter constraints in EE and OE methods for optimal identification of continuous LTI models. International Journal of Applied Mathematics and Computer Science, 22(2), (2012), 379-388. DOI: 10.2478/v10006-012-0028-3.
  • [13] W. Byrski: The survey for the exact and optimal state observers in Hilbert spaces. 2003 European Control Conference (ECC), (2003), 3548-3553. DOI: 10.23919/ECC.2003.7086592.
  • [14] P. Airikka: Advanced control methods for industrial process control. Computing and Control Engineering Journal, 15(3), (2004), 18-23. DOI: 10.1049/cce:20040303.
  • [15] S.J. Qin and T.A. Badgwell: A survey of industrial model predictive control technology. Control Engineering Practice, 11(7), (2004), 733-764. DOI: 10.1016/S0967-0661(02)00186-7.
  • [16] M. Morari and H.L. Jay: Model predictive control: past, present and future. Computers & Chemical Engineering, 23(4), (1999), 667-682. DOI: 10.1016/S0098-1354(98)00301-9.
  • [17] L. Wang: Model Predictive Control System Design and Implementation using MATLAB®. Springer, London, 2009.
  • [18] P. Tatjewski: Advanced Control of Industrial Processes: Structures and Algorithms. Springer, London, 2007.
  • [19] Precise Simulation Ltd., Hong Kong: FEATool Multiphysics v 1.11 User’s Guide: https://www.featool.com [Access date: 04.01.2022].
Uwagi
1. This work was supported by the scientific research funds from the Polish Ministry of Education and Science and AGH UST Agreement no 16.16.120.773 and was also conducted within the research of EC Grant H2020-MSCARISE-2018/824046.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16a16b16-2581-4eed-8d86-cd0751e5adc1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.