PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of ageing heat treatment temperature on the properties of DMLS additive manufactured 17-4PH steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Additive manufacturing (AM) is a modern, innovative manufacturing method that enables the production of fully dense products with high mechanical properties and complex shapes that are often impossible to obtain by traditional methods. The 17-4PH grade steel is often applied where high mechanical performance is required. 17-4PH, or AISI 630, is intended for precipitation hardening, an operation that combines solution and ageing treatments and is used to significantly change the microstructure of the steel and enhance its mechanical properties. This study investigates the effect of precipitation hardening on the properties of 17-4PH steel. To examine microstructure and morphology, metallographic tests were performed together with phase composition and chemical composition analyses. Mechanical parameters were determined via Vickers hardness testing and the Oliver-Pharr method. Samples were fabricated using direct metal laser sintering (DMLS), which is one of the powder bed fusion methods. The use of a constant solution treatment temperature of 1040_C and different ageing temperatures made it possible to evaluate the effects of ageing temperature on the mechanical properties and microstructure of 17-4PH. The presence of face-centered cubic FCC g-austenite and body-centerd cubic BCC a-martensite structures were detected. The tests revealed that – similarly to the wrought material – the highest hardness of 382_10:3 HV0:2 was obtained after ageing at 450_C. The nanoindentation test showed the same H/E ratio for the sample after fabrication and after solution treatment at 0.016769, but this value increased after ageing to 127–157.5%. The sample aged at 450_C was characterized by the highest H/E ratio of 0.026367, which indicates the highest wear resistance of this material under employed treatment conditions. In general, the sample treated at 450_C showed the best performance out of all tested samples, proving to have the smallest grain size as well as high Vickers and nanoindentation hardness. On the other hand, the use of solution treatment led to reduced hardness and improved workability of the AM material.
Rocznik
Strony
art. no. e146237
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
  • Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
  • Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
  • Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
autor
  • Institute of Physics, Maria Curie-Sklodowska University in Lublin, pl. M. Curie-Sklodowskiej 1, 20-031 Lublin, Poland
  • Department of Applied Physics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36D, 20-618 Lublin, Poland
Bibliografia
  • [1] A. Ziewiec, A. Zielińska-Lipiec, and E. Tasak, “Microstructure of Welded Joints of X5CrNiCuNb16-4 (17-4 PH) Martensitic Stainlees Steel After Heat Treatment,” Arch. Metall. Mater., vol. 59, no. 3, pp. 965–970, Oct. 2014, doi: 10.2478/amm-2014-0162.
  • [2] M. del R. Lara Banda, D.Y. Pérez Ortíz, C. Gaona Tiburcio, P. Zambrano-Robledo, J.A. Cabral Miramontes, and F. Almeraya Calderon, “Citric Acid Passivation of 15-5PH and 17-4PH Stainless Steel Used in the Aeronautical Industry,” in Proc. of the Symposium of Aeronautical and Aerospace Processes, Materials and Industrial Applications, P. Zambrano-Robledo, A. Salinas-Rodriguez, and F. Almeraya Calderon, Eds., Cham: Springer International Publishing, 2018, pp. 95–104. doi: 10.1007/978-3-319-65611-3_9.
  • [3] B. Alım et al., “Precipitation-hardening stainless steels: Potential use radiation shielding materials,” Radiat. Phys. Chem., vol. 194, p. 110009, May 2022, doi: 10.1016/j.radphyschem.2022.110009.
  • [4] M. Yousefi, M. Rajabi, M. Yousefi, and M.S. Amiri Kerahroodi, “Failure Analysis of a 17-4PH Stainless Steel Part in an Exhaust Fastener,” J. Fail. Anal. Preven., vol. 21, no. 6, pp. 2278–2289, Dec. 2021, doi: 10.1007/s11668-021-01291-8.
  • [5] F.J. Alamos et al., “Effect of powder reuse on orthopedic metals produced through selective laser sintering,” Manuf. Lett., p. S2213846321000407, Jun. 2021, doi: 10.1016/j.mfglet.2021.06.002.
  • [6] D.Y. Park et al., “Development of hydrophobic surgical forceps using powder injection molding and surface treatment,” Arch. Metall. Mater., vol. 63, no. 1, Mar. 2018, doi: 10.24425/118964.
  • [7] Y. Bozkurt and E. Karayel, “3D printing technology; methods, biomedical applications, future opportunities and trends,” J. Mater. Res. Technol-JMRT, vol. 14, pp. 1430–1450, Sep. 2021, doi: 10.1016/j.jmrt.2021.07.050.
  • [8] S. Cooke, K. Ahmadi, S. Willerth, and R. Herring, “Metal additive manufacturing: Technology, metallurgy and modelling,” J. Manuf. Process., vol. 57, pp. 978–1003, Sep. 2020, doi: 10.1016/j.jmapro.2020.07.025.
  • [9] Kh. Moeinfar, F. Khodabakhshi, S.F. Kashani-bozorg, M. Mohammadi, and A.P. Gerlich, “A review on metallurgical aspects of laser additive manufacturing (LAM): Stainless steels, nickel superalloys, and titanium alloys,” J. Mater. Res. Technol-JMRT, vol. 16, pp. 1029–1068, Jan. 2022, doi: 10.1016/j.jmrt.2021.12.039.
  • [10] L.E. Murr et al., “Microstructures and Properties of 17-4 PH Stainless Steel Fabricated by Selective Laser Melting,” J. Mater. Res. Technol-JMRT, vol. 1, no. 3, pp. 167–177, Oct. 2012, doi: 10.1016/S2238-7854(12)70029-7.
  • [11] D. Ding, Z. Pan, D. Cuiuri, and H. Li, “Wire-feed additive manufacturing of metal components: technologies, developments and future interests,” Int. J. Adv. Manuf. Technol., vol. 81, no. 1–4, pp. 465–481, Oct. 2015, doi: 10.1007/s00170-015-7077-3.
  • [12] W. Macek, R.F. Martins, R. Branco, Z. Marciniak, M. Szala, and S. Wro´nski, “Fatigue fracture morphology of AISI H13 steel obtained by additive manufacturing,” Int. J. Fract., Jan. 2022, doi: 10.1007/s10704-022-00615-5.
  • [13] H.R. Lashgari, Y. Xue, C. Onggowarsito, C. Kong, and S. Li, “Microstructure, Tribological Properties and Corrosion Behaviour of Additively Manufactured 17-4PH Stainless Steel: Effects of Scanning Pattern, Build Orientation, and Single vs. Double scan,” Mater. Today Commun., vol. 25, p. 101535, Dec. 2020, doi: 10.1016/j.mtcomm.2020.101535.
  • [14] M. Walczak and M. Szala, “Effect of shot peening on the surface properties, corrosion and wear performance of 17-4PH steel produced by DMLS additive manufacturing,” Archiv. Civ. Mech. Eng., vol. 21, no. 4, p. 157, Dec. 2021, doi: 10.1007/s43452-021-00306-3.
  • [15] Y. Zhang and J. Zhang, “Finite element simulation and experimental validation of distortion and cracking failure phenomena in direct metal laser sintering fabricated component,” Addit. Manuf., vol. 16, pp. 49–57, Aug. 2017, doi: 10.1016/j.addma.2017.05.002.
  • [16] M. Shehata, T.M. Hatem, and W.A. Samad, “Experimental Study of Build Orientation in Direct Metal Laser Sintering of 17-4PH Stainless Steel,” 3D Print. Addit. Manuf., vol. 6, no. 4, pp. 227–233, Aug. 2019, doi: 10.1089/3dp.2017.0106.
  • [17] G. Yeli, M.A. Auger, K. Wilford, G.D.W. Smith, P.A.J. Bagot, and M.P. Moody, “Sequential nucleation of phases in a 17-4PH steel: Microstructural characterisation and mechanical properties,” Acta Mater., vol. 125, pp. 38–49, Feb. 2017, doi: 10.1016/j.actamat.2016.11.052.
  • [18] J. Sripada et al., “Effect of hot isostatic pressing on microstructural and micromechanical properties of additively manufactured 17–4PH steel,” Mater. Charact., vol. 192, p. 112174, Oct. 2022, doi: 10.1016/j.matchar.2022.112174.
  • [19] C.N. Hsiao, C.S. Chiou, and J.R. Yang, “Ageing reactions in a 17-4 PH stainless steel,” Mater. Chem. Phys., vol. 74, no. 2, pp. 134–142, Mar. 2002, doi: 10.1016/S0254-0584(01)00460-6.
  • [20] J. Tian, W. Wang, W. Yan, Z. Jiang, Y. Shan, and K. Yang, “Cracking due to Cu and Ni segregation in a 17-4 PH stainless steel piston rod,” Eng. Fail. Anal., vol. 65, pp. 57–64, Jul. 2016, doi: 10.1016/j.engfailanal.2016.03.011.
  • [21] S. Cheruvathur, E.A. Lass, and C.E. Campbell, “Additive Manufacturing of 17-4 PH Stainless Steel: Post-processing Heat Treatment to Achieve Uniform Reproducible Microstructure,” JOMJ. Miner. Met. Mater. Soc., vol. 68, no. 3, pp. 930–942, Mar. 2016, doi: 10.1007/s11837-015-1754-4.
  • [22] I. Mutlu and E. Oktay, “Characterization of 17-4 PH stainless steel foam for biomedical applications in simulated body fluid and artificial saliva environments,” Mater. Sci. Eng.-C, vol. 33, no. 3, pp. 1125–1131, Apr. 2013, doi: 10.1016/j.msec.2012.12.004.
  • [23] R. Singh, J.S. Sidhu, Rishab, B.S. Pabla, and A. Kumar, “Three-Dimensional Printing of Innovative Intramedullary Pin Profiles with Direct Metal Laser Sintering,” J. Mater. Eng. Perform., vol. 31, no. 1, pp. 240–253, Jan. 2022, doi: 10.1007/s11665-021-06176-3.
  • [24] D. Manfredi, F. Calignano, M. Krishnan, R. Canali, E. Ambrosio, and E. Atzeni, “From Powders to Dense Metal Parts: Characterization of a Commercial AlSiMg Alloy Processed through Direct Metal Laser Sintering,” Materials, vol. 6, no. 3, pp. 856–869, Mar. 2013, doi: 10.3390/ma6030856.
  • [25] N. Guennouni et al., “Comparative study of the microstructure between a laser beam melted 17-4PH stainless steel and its conventional counterpart,” Mater. Sci. Eng.-A, vol. 823, p. 141718, Aug. 2021, doi: 10.1016/j.msea.2021.141718.
  • [26] S.F. Siddiqui, A.A. Fasoro, C. Cole, and A.P. Gordon, “Mechanical Characterization and Modeling of Direct Metal Laser Sintered Stainless Steel GP1,” J. Eng. Mater. Technol., vol. 141, no. 3, p. 031009, Jul. 2019, doi: 10.1115/1.4042867.
  • [27] A.I. Gorunov, O.V. Kudimov, and A.Kh. Gilmutdinov, “Effect of stress concentrators on fracture resistance of specimens fabricated by direct metal laser sintering,” Eng. Fail. Anal., vol. 131, p. 105900, Jan. 2022, doi: 10.1016/j.engfailanal.2021.105900.
  • [28] S.A. Razavi, F. Ashrafizadeh, and S. Fooladi, “Prediction of age hardening parameters for 17-4PH stainless steel by artificial neural network and genetic algorithm,” Mater. Sci. Eng.-A, vol. 675, pp. 147–152, Oct. 2016, doi: 10.1016/j.msea.2016.08.049.
  • [29] L. Klimek, E. Wołowiec, and B. Majkowska, “Types of wear and tear of biomaterials used in orthopaedic surgery,” J. Achiev. Mater. Manuf. Eng., vol. 56, no. 2, pp. 83–89, 2013.
  • [30] W.C. Oliver and G.M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” J. Mater. Res., vol. 19, no. 1, pp. 3–20, Jan. 2004, doi: 10.1557/jmr.2004.19.1.3.
  • [31] M. Szala, M. Walczak, L. Łatka, K. Gancarczyk, and D. Özkan, “Cavitation Erosion and Sliding Wear of MCrAlY and NiCrMo Coatings Deposited by HVOF Thermal Spraying,” Adv. Mater. Sci., vol. 20, no. 2, pp. 26–38, Jun. 2020, doi: 10.2478/adms-2020-0008.
  • [32] S.S. M. Tavares, J.M. Pardal, T.R.B. Martins, and M.R. da Silva, “Influence of Sulfur Content on the Corrosion Resistance of 17-4PH Stainless Steel,” J. Mater. Eng. Perform., vol. 26, no. 6, pp. 2512–2519, Jun. 2017, doi: 10.1007/s11665-017-2693-8.
  • [33] M. Karaminezhaad, S. Sharafi, and K. Dalili, “Effect of molybdenum on SCC of 17-4PH stainless steel under different ageing conditions in chloride solutions,” J. Mater. Sci., vol. 41, no. 11, pp. 3329–3333, Jun. 2006, doi: 10.1007/s10853-005-5416-8.
  • [34] A. Ziewiec, A. Zieli´nska-Lipiec, J. Kowalska, and K. Ziewiec, “Microstructure Characterization of Welds in X5CrNiCuNb16-4 Steel in Overaged Condition,” Adv. Mater. Sci., vol. 19, no. 1, pp. 57–69, Mar. 2019, doi: 10.2478/adms-2019-0005.
  • [35] H. Eskandari, H.R. Lashgari, L. Ye, M. Eizadjou, and H. Wang, “Microstructural characterization and mechanical properties of additively manufactured 17–4PH stainless steel,” Mater. Today Commun., vol. 30, p. 103075, Mar. 2022, doi: 10.1016/j.mtcomm.2021.103075.
  • [36] T. LeBrun, T. Nakamoto, K. Horikawa, and H. Kobayashi, “Effect of retained austenite on subsequent thermal processing and resultant mechanical properties of selective laser melted 17–4 PH stainless steel,” Mater. Des., vol. 81, pp. 44–53, Sep. 2015, doi: 10.1016/j.matdes.2015.05.026.
  • [37] J.D. Bressan, D.P. Daros, A. Sokolowski, R.A. Mesquita, and C.A. Barbosa, “Influence of hardness on the wear resistance of 17-4 PH stainless steel evaluated by the pin-on-disc testing,” J. Mater. Process. Technol., vol. 205, no. 1–3, pp. 353–359, Aug. 2008, doi: 10.1016/j.jmatprotec.2007.11.251.
  • [38] B. Rivolta and R. Gerosa, “On the non-isothermal precipitation of copper-rich phase in 17-4 PH stainless steel using dilatometric techniques,” J. Therm. Anal. Calorim., vol. 102, no. 3, pp. 857–862, Dec. 2010, doi: 10.1007/s10973-010-0882-x.
  • [39] B. AlMangour and J.-M. Yang, “Improving the surface quality and mechanical properties by shot-peening of 17-4 stainless steel fabricated by additive manufacturing,” Mater. Des., vol. 110, pp. 914–924, Nov. 2016, doi: 10.1016/j.matdes.2016.08.037.
  • [40] M.R. Stoudt, C.E. Campbell, and R.E. Ricker, “Examining the Relationship Between Post-Build Microstructure and the Corrosion Resistance of Additively Manufactured 17-4PH Stainless Steel,” Materialia, vol. 22, p. 101435, May 2022, doi: 10.1016/j.mtla.2022.101435.
  • [41] T. DebRoy et al., “Additive manufacturing of metallic components – Process, structure and properties,” Prog. Mater. Sci., vol. 92, pp. 112–224, Mar. 2018, doi: 10.1016/j.pmatsci.2017.10.001.
  • [42] H.K. Rafi, D. Pal, N. Patil, T.L. Starr, and B.E. Stucker, “Microstructure and Mechanical Behavior of 17-4 Precipitation Hardenable Steel Processed by Selective Laser Melting,” J. Mater. Eng. Perform., vol. 23, no. 12, pp. 4421–4428, Dec. 2014, doi: 10.1007/s11665-014-1226-y.
  • [43] C. Rowolt, B. Milkereit, A. Springer, C. Kreyenschulte, and O. Kessler, “Dissolution and precipitation of copper-rich phases during heating and cooling of precipitation-hardening steel X5CrNiCuNb16-4 (17-4 PH),” J. Mater. Sci., vol. 55, no. 27, pp. 13244–13257, Sep. 2020, doi: 10.1007/s10853-020-04880-4.
  • [44] A.R. Etemadi, P. Behjati, A. Emami, S.M.-D. Motiei, and S. Mirsaeedi, “Failure analysis of holding yokes made of investment cast 17-4 PH stainless steel,” Eng. Fail. Anal., vol. 18, no. 4, pp. 1242–1246, Jun. 2011, doi: 10.1016/j.engfailanal.2011.03.008.
  • [45] A. Gratton, “Comparison of Mechanical, Metallurgical Properties of 17-4PH Stainless Steel between Direct Metal Laser Sintering (DMLS) and Traditional Manufacturing Methods,” Proceedings of The National Conference On Undergraduate Research (NCUR), 2012.
  • [46] Y. Sun, R.J. Hebert, and M. Aindow, “Effect of heat treatments on microstructural evolution of additively manufactured and wrought 17-4PH stainless steel,” Mater. Des., vol. 156, pp. 429–440, Oct. 2018, doi: 10.1016/j.matdes.2018.07.015.
  • [47] F.R. Andreacola, I. Capasso, L. Pilotti, and G. Brando, “Influence of 3d-printing parameters on the mechanical properties of 17-4PH stainless steel produced through Selective Laser Melting,” Frattura ed Integrit´r Strutturale, vol. 15, no. 58, pp. 282–295, Sep. 2021, doi: 10.3221/IGF-ESIS.58.21.
  • [48] M. Szala, M. Walczak, K. Pasierbiewicz, and M. Kamiński, “Cavitation Erosion and Sliding Wear Mechanisms of AlTiN and TiAlN Films Deposited on Stainless Steel Substrate,” Coatings, vol. 9, no. 5, p. 340, May 2019, doi: 10.3390/coatings9050340.
  • [49] M. Walczak, K. Pasierbiewicz, and M. Szala, “Adhesion and Mechanical Properties of TiAlN and AlTiN Magnetron Sputtered Coatings Deposited on the DMSL Titanium Alloy Substrate,” Acta Phys. Pol. A, vol. 136, no. 2, pp. 294–298, Aug. 2019, doi: 10.12693/APhysPolA.136.294.
  • [50] M. Dojčinović, “Comparative cavitation erosion test on steels produced by ESR and AOD refining,” Mater. Sci.-Pol., vol. 29, no. 3, pp. 216–222, Sep. 2011, doi: 10.2478/s13536-011-0034-4.
  • [51] H. Soyama, “Cavitation Peening: A Review,” Metals, vol. 10, no. 2, p. 270, Feb. 2020, doi: 10.3390/met10020270.
  • [52] P.K. Farayibi, J. Hankel, F. van gen Hassend, M. Blüm, S. Weber, and A. Röttger, “Tribological characteristics of sintered martensitic stainless steels by nano-scratch and nanoindentation tests,” Wear, vol. 512–513, p. 204547, Jan. 2023, doi: 10.1016/j.wear.2022.204547.
  • [53] Z. Zhao et al., “Effect of Solution Temperature on the Microstructure and Properties of 17-4PH High-Strength Steel Samples Formed by Selective Laser Melting,” Metals, vol. 12, no. 3, p. 425, Feb. 2022, doi: 10.3390/met12030425.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16a0743e-8570-4b52-8382-60d47b8855f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.