PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Patient-specific finite element analysis of frictional behavior in different esophageal regions during endoscopy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Endoscopy is a common and effective method to treat digestive system diseases. Not only can it detect the physiological state of the digestive tract, but also can conduct clinical operations. As a result, it’s of great significance to make clear the relationship between the clinical operation and the complications. Methods: Considering the difficulty in measuring the contact force and determining the stress distribution in real time during endoscopy, a specific-patient finite element model for the frictional behavior at the endoscope-esophagus interface was built in current study. By collecting the CT data of the patient, a 3D esophagus model was built and divided into three characteristic regions (narrow region, thoracic region and abdominal region) according to the physiological structure. Results: Results showed that the radius of the narrowest position was the dominant factor for the maximum von Mises stress when the endoscope passed through the narrow region. For abdominal region and thoracic region, with the increasing coefficient of friction (COF) and amplitude, the total force duo to frictional force (CFSM), frictional dissipation (FD), strain energy (SE) and maximum von Mises stress (Max) all increased correspondingly. Meanwhile, the region of stress concentration gradually approached the initial contact stage. Conclusions: The results can provide theoretical basis and technical support for clinical application and offer some suggestions for medical workers during endoscopy as well.
Rocznik
Strony
11--24
Opis fizyczny
Bibliogr. 30 poz., rys., wykr.
Twórcy
  • Tribology Research Institute, Key Laboratory for Advanced Technology of Materials of Ministry of Education, Southwest Jiaotong University, Chengdu, China
autor
  • Tribology Research Institute, Key Laboratory for Advanced Technology of Materials of Ministry of Education, Southwest Jiaotong University, Chengdu, China
autor
  • Tribology Research Institute, Key Laboratory for Advanced Technology of Materials of Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
autor
  • Department of General Surgery, Chengdu Second People’s Hospital, Chengdu, China
  • Tribology Research Institute, Key Laboratory for Advanced Technology of Materials of Ministry of Education, Southwest Jiaotong University, Chengdu, China
Bibliografia
  • [1] ANDREONI B., FARINA M.L., BIFFI R., CROSTA C., Esophageal perforation and caustic injury: emergency management of caustic ingestion, Dis. Esophagus, 1997, 10 (2), 95–100, DOI: 10.1093/dote/10.2.95.
  • [2] ATHANASSIADI K., GERAZOUNIS M., METAXAS E., KALANTZI N., Management of esophageal foreign bodies: a retrospective review of 400 cases, Eur. J. Cardiothorac. Surg., 2002, 21 (4), 653–656, DOI: 10.1016/S1010-7940(02)00032-5.
  • [3] AURICCHIO F., CONTI M., FERRARA A., MORGANTI S., REALI A., Patient-specific finite element analysis of carotid artery stenting: a focus on vessel modeling, Int. J. Numer Method Biomed. Eng., 2013, 29 (6), 645–664, DOI: 10.1002/cnm.2511.
  • [4] AURICCHIO F., CONTI M., MORGANTI S., REALI A., Simulation of transcatheter aortic valve implantation: a patientspecific finite element approach, Comput. Methods Biomech. Biomed. Engin., 2014, 17 (12), 1347–1357, DOI: 10.1080/ 10255842.2012.746676.
  • [5] AURICCHIO F., DI LORETO M., SACCO E.. Finite-element Analysis of a Stenotic Artery Revascularization Through a Stent Insertion, Computer Methods in Biomechanics and Biomedical Engineering, 2001, 4 (3), 249–263, DOI: 10.1080/10255840108908007.
  • [6] BOUMA B.E., TEARNEY G.J., COMPTON C.C., NISHIOKA N.S., Highresolution imaging of the human esophagus and stomach in vivo using optical coherence tomography, Gastrointestinal Endoscopy, 2000, 51 (4), 467–474, DOI: 10.1016/S0016-5107(00)70449-4.
  • [7] CARNIEL E.L., FRIGO A., FONTANELLA C.G. et al., A biomechanical approach to the analysis of methods and procedures of bariatric surgery, J. Biomech., 2017, 56, 32–41, DOI: 10.1016/j.jbiomech.2017.02.029.
  • [8] DAI Y., CHOPRA S.S, STEINBACH M., KNIEF S., HUNERBEIN M., Esophageal stents for leaks and perforations, Semin. Thorac. Cardiovasc. Surg., 2011, 23 (2), 159–162, DOI:10.1053/ j.semtcvs.2011.08.004.
  • [9] DOTTORI S., FLAMINI V., VAIRO G., Mechanical behavior of peripheral stents and stent-vessel interaction: A computational study, International Journal for Computational Methods in Engineering Science & Mechanics, 2016, 17 (3), 196–210, DOI: 10.1080/15502287.2016.1188530.
  • [10] EROGLU A., TURKYILMAZ A., SUBASI M., KARAOGLANOGLU N., The use of self-expandable metallic stents for palliative treatment of inoperable esophageal cancer, Dis. Esophagus, 2010, 23 (1), 64–70, DOI: 10.1111/j.1442-2050.2009.00978.x.
  • [11] GIOVANNINI M., MONGES G., SEITZ J.F. et al., Distant lymph node metastases in esophageal cancer: impact of endoscopic ultrasound-guided biopsy, Endoscopy, 1999, 31 (7), 536–540, DOI: 10.1055/s-1999-60.
  • [12] KAJZER W., KACZMAREK M., MARCINIAK J., Biomechanical analysis of stent–oesophagus system, Journal of Materials Processing Technology, 2005, 162–163, 196–202, DOI: 10.1016/ j.jmatprotec.2005.02.209.
  • [13] KIM J.S., SUNG I.H., KIM Y.T., KIM D.E., JANG Y.H., Analytical model development for the prediction of the frictional resistance of a capsule endoscope inside an intestine, Proc. Inst. Mech. Eng. H., 2007, 221 (8), 837–845, DOI: 10.1243/09544119JEIM173.
  • [14] KWON J., PARK S., KIM B., PARK J.O., Biomaterial property measurement system for locomotive mechanism in gastrointestinal tract, Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005, 1303–1308.
  • [15] LIN C.X., LI W., DENG H.Y., LI K., ZHOU Z.R., Friction Behavior of Esophageal Mucosa Under Axial and Circumferential Extension, Tribology Letters, 2019, 67 (1), 9, DOI: 10.1007/s11249-018-1123-x.
  • [16] LIN C.X., YU Q.Y., WANG J., JI W., LI W., ZHOU Z.R., Friction behavior between endoscopy and esophageal internal surface, Wear, 2017, 376, 272–280, DOI: 10.1016/ j.wear.2016.11.011.
  • [17] LITTLE D.C., SHAH S.R., ST PETER S.D., CALKINS C.M. et al., Esophageal foreign bodies in the pediatric population: our first 500 cases, J. Pediatr. Surg., 2006, 41 (5), 914–918, DOI: 10.1016/j.jpedsurg.2006.01.022.
  • [18] LI W., SHI L., DENG H.Y., ZHOU Z.R., Investigation on Friction Trauma of Small Intestine In Vivo Under Reciprocal Sliding Conditions, Tribology Letters, 2014, 55 (2), 261–270, DOI: 10.1007/s11249-014-0356-6.
  • [19] MAGNE P., Efficient 3D finite element analysis of dental restorative procedures using micro-CT data, Dent. Mater., 2007, 23 (5), 539–548, DOI: 10.1016/j.dental.2006.03.013.
  • [20] MIGLIAVACCA F., PETRINI L., MASSAROTTI P., SCHIEVANO S., AURICCHIO F., DUBINI G., Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall, Biomech. Model Mechanobiol., 2004, 2 (4), 205–217, DOI: 10.1007/s10237-004-0039-6.
  • [21] MORGANTI S., AURICCHIO F., BENSON D.J. et al., Patient-specific isogeometric structural analysis of aortic valve closure, Computer Methods in Applied Mechanics and Engineering, 2015, 284, 508–520, DOI: 10.1016/j.cma.2014.10.010.
  • [22] MOZAFARI H., DONG P., ZHAO S., BI Y., HAN X., GU L., Migration resistance of esophageal stents: The role of stent design, Comput. Biol. Med., 2018, 100, 43–49, DOI: 10.1016/ j.compbiomed.2018.06.031.
  • [23] NI X.Y., PAN C.W., GANGADHARA PRUSTY B., Numerical investigations of the mechanical properties of a braided non- -vascular stent design using finite element method, Comput. Methods Biomech. Biomed. Engin., 2015, 18(10), 1117–1125, DOI: 10.1080/10255842.2013.873420.
  • [24] NI X.Y., ZHANG Y.H., ZHAO H.X., PAN C.W., Numerical research on the biomechanical behaviour of braided stents with different end shapes and stent-oesophagus interaction, Int. J. Numer Method. Biomed. Eng., 2018, 34 (6), e2971, DOI: 10.1002/cnm.2971.
  • [25] SCHIAVONE A., ABUNASSAR C., HOSSAINY S., ZHAO L.G., Computational analysis of mechanical stress-strain interaction of a bioresorbable scaffold with blood vessel, J. Biomech., 2016, 49 (13), 2677–2683, DOI: 10.1016/j.jbiomech.2016.05.035.
  • [26] SCHIAVONE A., ZHAO L.G., ABDEL-WAHAB A.A., Effects of material, coating, design and plaque composition on stent deployment inside a stenotic artery--finite element simulation, Mater Sci. Eng. C. Mater. Biol. Appl., 2014, 42, 479–88, DOI: 10.1016/j.msec.2014.05.057.
  • [27] TANG W., GEL S.R., ZHU H., CAO X.C., LI N., The influence of normal load and sliding speed on frictional properties of skin, Journal of Bionic Engineering, 2008, 5 (1), 33–38, DOI: 10.1016/S1672-6529(08)60004-9.
  • [28] WANG X., MENG M.Q., An experimental study of resistant properties of the small intestine for an active capsule endoscope, Proc. Inst. Mech. Eng. H., 2010, 224 (1), 107–18, DOI: 10.1243/09544119JEIM540.
  • [29] ZHANG C., LIU H., LI H.Y., Experimental investigation of intestinal frictional resistance in the starting process of the capsule robot, Tribology International, 2014, 70, 11–17, DOI: 10.1016/j.triboint.2013.09.019.
  • [30] ZHAO H., LIU Y., NI X., XIA F., ZHANG X., Mechanical Performance of Cup-spherical-shaped and Straight Form Braided Esophageal Stent, TELKOMNIKA Indonesian Journal of Electrical Engineering, 2013, 11(11), 6657–6663, DOI: 10.11591/telkomnika.v11i11.3512.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-169ce1e2-050a-4fe8-a139-4a9357772f17
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.