PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performances comparison of BLDC and BLAC motors based matrix converter

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Porównanie wydajności konwertera matrycowego opartego na silnikach BLDC i BLAC
Języki publikacji
EN
Abstrakty
EN
The ability to adjust the speed of a brushless motor is widely used in a variety of applications. Because of its great energy density, efficiency, and resilience, it is recommended. On the other hand, the matrix converter (MC) is an AC / AC power supply system which has many advantages which allow to maintain the quality of the energy supplied directly from the network more efficient and well filtered. This article proposes a compareative study of the speed control of a brusless motor supplied first through an inverter and then directly from the grid using a matrix converter in terms of power quality perfomonces and cost.
PL
Możliwość regulacji prędkości silnika bezszczotkowego jest szeroko stosowana w różnych zastosowaniach. Ze względu na dużą gęstość energii, wydajność i odporność jest polecana. Z kolei konwerter macierzowy (MC) to system zasilania AC/AC, który ma wiele zalet, które pozwalają na utrzymanie jakości energii dostarczanej bezpośrednio z sieci bardziej wydajnej i dobrze filtrowanej. W artykule zaproponowano badanie porównawcze regulacji prędkości obrotowej silnika bezszczotkowego zasilanego najpierw przez falownik, a następnie bezpośrednio z sieci za pomocą przekształtnika macierzowego pod względem wydajności i kosztów.
Słowa kluczowe
Rocznik
Strony
116--125
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Bibliografia
  • [1] A. K. Singh and S. Pattnaik, “Matrix Converter Operated Hysteresis Current Controlled BLDC Motor Drive for Efficient Speed Control and Improved Power Quality,” Procedia Computer Science, vol. 167, no. 2019, pp. 541–550, 2020, doi: 10.1016/j.procs.2020.03.314.
  • [2] A. T. Hafez, A. A. Sarhan, and S. Givigi, “Brushless DC motor speed control based on advanced sliding mode control (SMC) techniques,” SysCon 2019 - 13th Annual IEEE International Systems Conference, Proceedings, pp. 1–6, 2019, doi: 10.1109/SYSCON.2019.8836754.
  • [3] D. Varajão and R. E. Araújo, “Modulation methods for directand indirect matrix converters: A review,” Electronics (Switzerland), vol. 10, no. 7, pp. 1–29, 2021, doi: 10.3390/electronics10070812.
  • [4] F. Pamuji, “Comparison of BLDC Motor Controller Design for Electric Vehicles Using Fuzzy Logic Controller and Artificial Neural Network,” Przegląd Elektrotechniczny, vol. 1, no. 6, pp.3–11, 2021, doi: 10.15199/48.2021.06.01.
  • [5] M. García et al., “Power Electronics for Drives Power Drives Lifetime Improved in Power Electronics Electronics Drives Lifetime Improved in Power Electronics for Drives Lifetime Improved in Power Electronics for BLDC Drives using Fuzzy Logic and,” IFAC PapersOnLine, vol. 52, no. 13, pp. 2372–2377, 2019, doi: 10.1016/j.ifacol.2019.11.561.
  • [6] S. WONGKHEAD and S. TUNYASRIRUT, “Implementation of a dsp- tms320f28335 based state feedback with optimal design of pi controller for a speed of bldc motor by ant colony optimization,” Przeglad Elektrotechniczny, vol. 97, no. 7, pp. 7–12, 2021, doi: 10.15199/48.2021.07.02.
  • [7] E. Gowthaman, V. Vinodhini, M. Y. Hussain, S. K. Dhinakaran, and T. Sabarinathan, “ScienceDirect ScienceDirect ScienceDirect ScienceDirect 1st International Conference Assessing the feasibility of using temperature function a long-term demand forecast Speed Control of Permanent Magnet Brushless DC Motor Using Speed Control of Permanent ,” Energy Procedia, vol. 117, pp. 1101–1108, 2017, [Online]. Available: http://dx.doi.org/10.1016/j.egypro.2017.05.234.
  • [8] V. Mach, S. Kovář, J. Valouch, and M. Adámek, “Brushless DCmotor control on arduino platform,” Przeglad Elektrotechniczny,vol. 94, no. 11, pp. 105–107, 2018, doi: 10.15199/48.2018.11.24.
  • [9] Y. Park, H. Kim, H. Jang, S. H. Ham, J. Lee, and D. H. Jung, “Efficiency Improvement of Permanent Magnet BLDC with Halbach Magnet Array for Drone,” IEEE Transactions on Applied Superconductivity, vol. 30, no. 4, 2020, doi: 10.1109/TASC.2020.2971672.
  • [10] M. Sumega, Š. Zoššák, P. Varecha, and P. Rafajdus, “Sources of torque ripple and their influence in BLDC motor drives,” Transportation Research Procedia, vol. 40, pp. 519–526, 2019, doi: 10.1016/j.trpro.2019.07.075.
  • [11] A. Popenda and M. Nowak, “Modelling of BLDC motor with different fashions of winding connection,” Przeglad Elektrotechniczny, vol. 95, no. 2, pp. 92–95, 2019, doi: 10.15199/48.2019.02.21.
  • [12] F. Korkmaz, I. Topaloglu, and H. Mamur, “DTC Control of BLAC and BLDC Motors for Pure Electric Vehicles,” International Journal of Instrumentation and Control Systems, vol. 6, no. 2/3, pp. 9–17, 2016, doi: 10.5121/ijics.2016.6302.
  • [13] D. Thiyaharajan and B. Dora Arul Selvi, “Modified SVPWM based three phase to nine phase matrix converter for nine phase induction motor with closed loop speed control,” Journal of Ambient Intelligence and Humanized Computing, vol. 12, no. 6, pp. 6091–6105, 2021, doi: 10.1007/s12652-020-02178-6.
  • [14] J. Zhang, L. Li, D. G. Dorrell, M. Norambuena, and J. Rodriguez, “Predictive Voltage Control of Direct Matrix Converters with Improved Output Voltage for Renewable Distributed Generation,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 7, no. 1, pp. 296–308, 2019, doi: 10.1109/JESTPE.2018.2874275.
  • [15] H. F. Ahmed, H. Cha, and A. A. Khan, “A Single-Phase Buck Matrix Converter with High-Frequency Transformer Isolation and Reduced Switch Count,” IEEE Transactions on Industrial Electronics, vol. 64, no. 9, pp. 6979–6988, 2017, doi: 10.1109/TIE.2017.2686329.
  • [16] S. M. Dabour, A. S. Abdel-Khalik, S. Ahmed, A. M. Massoud,and S. M. Allam, “Common-mode voltage reduction for space vector modulated three- to five-phase indirect matrix converter,”International Journal of Electrical Power and Energy Systems, vol. 95, pp. 266–274, 2018, doi: 10.1016/j.ijepes.2017.08.020.
  • [17] S. A. Rahman, S. B. Mule, E. D. Mitiku, G. T. Aduye, and C. Gopinath, “Highest voltage sag and swell compensation using single phase matrix converter with four controlled switches,” Przeglad Elektrotechniczny, vol. 97, no. 4, pp. 134–138, 2021, doi: 10.15199/48.2021.04.24.
  • [18] Z. Ortatepe and A. Karaarslan, “Error minimization based on multi-objective finite control set model predictive control formatrix converter in DFIG,” International Journal of Electrical Power and Energy Systems, vol. 126, no. PA, p. 106575, 2021, doi: 10.1016/j.ijepes.2020.106575.
  • [19] X. Dongxia, L. Shengmin, and S. Xuxia, “AC-AC Matrix Converter,” 2009, pp. 205–208.
  • [20] L. R. Merchan-Villalba, J. M. Lozano-Garcia, J. G. Avina-Cervantes, H. J. Estrada-Garcia, and J. Martinez-Patino, “Matrix Converter Based on SVD Modulation Using a Microcontroller as Unique Controlling Device,” IEEE Access, vol. 7, no. November, pp. 164815–164824, 2019, doi: 10.1109/ACCESS.2019.2952380.
  • [21] M. Boydak, A. Orhan, and A. Caliskan, “Using Buck-Boost Rectifier with Single-Phase-Matrix Converter to Reduce Switch Count Operation,” 2020 7th International Conference on Electrical and Electronics Engineering, ICEEE 2020, pp. 111–115, 2020, doi: 10.1109/ICEEE49618.2020.9102479.
  • [22] S. Ansari and A. Chandel, “Simulation based comprehensive analysis of direct and indirect matrix converter fed asynchronous motor drive,” 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics, UPCON 2017, vol. 2018-Janua, pp. 9–15, 2017, doi: 10.1109/UPCON.2017.8251014.
  • [23] M. Moghaddami, S. Member, A. I. Sarwat, and S. Member, “Single-Phase Soft-Switched AC-AC Matrix Converter with Power Controller for Bidirectional Inductive Power Transfer Systems,” vol. 9994, no. c, pp. 1–11, 2018, doi: 10.1109/TIA.2018.2820640.
  • [24] H. Boumediene, S. Hassaine, and B. Mazari, “Wielomianowe Inieliniowe sterowanie silenikiem indukcyjnym za pośrednictwem przetwornika macierzowego,” Przeglad Elektrotechniczny, vol. 93, no. 11, pp. 133–139, 2017, doi: 10.15199/48.2017.11.29.
  • [25] Q. H. Tran, T. D. Nguyen, and L. M. Phuong, “Simplified Space-Vector Modulation Strategy for Indirect Matrix Converter with Common-Mode Voltage and Harmonic Distortion Reduction,” IEEE Access, vol. 8, no. Cmv, pp. 218489–218498, 2020, doi: 10.1109/ACCESS.2020.3042528.
  • [26] M. Moghaddami and A. Sarwat, “Self-Tuned Single-Phase AC-AC Converter for Bidirectional Inductive Power Transfer Systems,” pp. 1–6, 2017.
  • [27] R. Wisniewski, G. Bazydlo, P. Szczesniak, and M. Wojnakowski, “Petri net-based specification of cyber-physical systems oriented to control direct matrix converters with spacevector modulation,” IEEE Access, vol. 7, no. MC, pp. 23407–23420, 2019, doi: 10.1109/ACCESS.2019.2899316.
  • [28] Z. Malekjamshidi, M. Jafari, J. Zhu, and D. Xiao, “Bidirectional power flow control with stability analysis of the matrix converter for microgrid applications,” International Journal of Electrical Power and Energy Systems, vol. 110, no. March, pp. 725–736, 2019, doi: 10.1016/j.ijepes.2019.03.053.
  • [29] A. Bento et al., “On the potential contributions of matrixconverters for the future grid operation, sustainable transportation and electrical drives innovation,” Applied Sciences (Switzerland), vol. 11, no. 10, 2021, doi: 10.3390/app11104597.
  • [30] G. Fink, Power Systems. 2017.
  • [31] J. Zhang, L. Li, and D. G. Dorrell, “Control and applications of direct matrix converters: A review,” Chinese Journal of Electrical Engineering, vol. 4, no. 2, pp. 18–27, 2018, doi: 10.23919/CJEE.2018.8409346.
  • [32] L. Empringham, J. W. Kolar, J. Rodriguez, P. W. Wheeler, and J. C. Clare, “Technological issues and industrial application of matrix converters: A review,” IEEE Transactions on Industrial Electronics, vol. 60, no. 10, pp. 4260–4271, 2013, doi: 10.1109/TIE.2012.2216231.
  • [33] H. A. L. Id, “Modulation naturelle généralisée des convertisseurs matriciels pour la variation de vitesse To cite this version : HAL Id : tel-01128262 Modulation naturelle généralisée des convertisseurs matriciels pour la variation de,” 2015.
  • [34] H. N. Nguyen, M. K. Nguyen, V. Q. B. Ngo, T. T. Tran, J. H. Choi, and Y. C. Lim, “Input power factor compensation strategy for zero CMV-SVM method in matrix converters,” IEEE Access, vol. 8, pp. 175805–175814, 2020, doi: 10.1109/ACCESS.2020.3025919.
  • [35] M. P. Jati, E. Purwanto, and B. Sumantri, “Comparative study of indirect space vector and venturini modulation for matrix converter fed induction motor,” Journal of Physics: Conference Series, vol. 1517, no. 1, pp. 1–8, 2020, doi: 10.1088/1742-6596/1517/1/012072.
  • [36] H. N. Nguyen and H. H. Lee, “An Effective SVM Method for Matrix Converters with a Superior Output Performance,” IEEE Transactions on Industrial Electronics, vol. 65, no. 9, pp. 6948–6958, 2018, doi: 10.1109/TIE.2017.2779438.
  • [37] J. Muñoz-Castillo et al., “Design of the input and output filter for a matrix converter using evolutionary techniques,” Applied Sciences (Switzerland), vol. 10, no. 10, 2020, doi: 10.3390/app10103524.
  • [38] H. She, H. Lin, X. Wang, and L. Yue, “Damped input filter design of matrix converter,” Proceedings of the International Conference on Power Electronics and Drive Systems, pp. 672–677, 2009, doi: 10.1109/PEDS.2009.5385684.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16931360-cf0f-44e4-b445-26ab78d5f720
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.